Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mũ và logarit - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề mũ và logarit (phiên bản đặc biệt) do thầy Đặng Việt Đông biên soạn, tài liệu gồm 506 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề mũ và logarit giúp học sinh tự học, rèn luyện nội dung Giải tích 12 chương 2, nhằm củng cố, nâng cao các kiến thức được học tại lớp, cũng như dùng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán. Nội dung tài liệu chuyên đề mũ và logarit – Đặng Việt Đông: CHUYÊN ĐỀ MŨ – LŨY THỪA + Tính giá trị của biểu thức chứa lũy thừa. + Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. + So sánh các lũy thừa. + Tính chất lũy thừa. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA + Tập xác định của hàm số chứa hàm lũy thừa. + Đạo hàm hàm số lũy thừa. + Khảo sát sự biến thiên và đồ thị hàm số lũy thừa. + Tính giá trị hàm số. CHUYÊN ĐỀ LOGARIT + Tính giá trị biểu thức chứa lô-ga-rít. + Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. + So sánh các biểu thức lô-ga-rít. + Min, max biểu thức chứa lôgarit. CHUYÊN ĐỀ HÀM SỐ MŨ – LOGARIT + Tập xác định của hàm số mũ, hàm số lôgarit. + Tính đạo hàm hàm số mũ, hàm số lôgarit. + Tính đơn diệu, tiệm cận, cực trị. + Tính chất hàm số mũ, hàm số lôgarit. + Đồ thị hàm số mũ, hàm số lôgarit và các bài toán liên quan. + Tính giá trị hàm số mũ, hàm số lôgarit. + Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lôgarit một biến số. + Các bài toán lãi suất – trả góp. + Các bài toán thực tế liên môn. [ads] CHUYÊN ĐỀ PHƯƠNG TRÌNH MŨ  + Phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarit hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ PHƯƠNG TRÌNH LÔGARIT + Phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarit hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ BẤT PHƯƠNG TRÌNH MŨ + Bất phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarít hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ BẤT PHƯƠNG TRÌNH LÔGARIT  + Bất phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarít hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ MIN, MAX MŨ – LÔGARIT NHIỀU BIẾN  + Phương pháp hàm đặc trưng. + Phương pháp khác. Những điểm mới trong tài liệu chuyên đề mũ và logarit (phiên bản đặc biệt) so với các tài liệu về mũ và logarit đã chia sẻ trước đó của thầy Đặng Việt Đông (xem thêm trên ): + Tất cả các bài toán trắc nghiệm mũ và logarit trong tài liệu này đều có đáp án và lời giải chi tiết. + Tài liệu bổ sung thêm nhiều dạng toán mới về mũ và logarit, nhất là các dạng toán vận dụng cao được “phát sinh” trong các đề thi thử Toán THPT Quốc gia 2018 vừa qua. + Kiến thức và bài tập mũ – logarit được sắp xếp theo thứ tự từ thấp đến cao dựa vào mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng bậc cao, điều này giúp học sinh thuộc các đối tượng có học lực khác nhau có thể dễ dàng tìm kiếm phần nội dung phù hợp với bản thân dù số trang tài liệu là khá lớn. + Phần bài tập và lời giải được tách riêng, thuận lợi cho việc in ấn, giao bài tập của giáo viên.

Nguồn: toanmath.com

Đọc Sách

369 bài toán trắc nghiệm chủ đề lũy thừa, mũ và logarit có lời giải chi tiết
Tài liệu gồm 135 trang tuyển tập 369 bài toán trắc nghiệm chủ đề lũy thừa, mũ và logarit, các bài toán đều có đáp án và được giải chi tiết, một số bài có hướng dẫn thủ thuật bấm máy tính để giải nhanh. Các dạng toán được chia thành 9 vấn đề: + Vấn đề 1. Tập xác định và đồ thị + Vấn đề 2. Lũy thừa ‐ mũ: rút gọn và tính giá trị + Vấn đề 3. Mũ ‐ lôgarit: rút gọn và tính giá trị + Vấn đề 4. Phương trình mũ [ads] + Vấn đề 5. Bất phương trình mũ + Vấn đề 6. Phương trình lôgarit + Vấn đề 7. Bất phương trình lôgarit + Vấn đề 8. Ứng dụng của lũy thừa ‐ mũ ‐ lôgarit + Vấn đề 9. Một số bài toán hay và khó về mũ ‐ lôgarit
100 bài toán trắc nghiệm hàm số mũ, hàm số logarit có đáp án - Phùng Hoàng Em
Tài liệu gồm 10 trang tuyển tập 100 bài toán trắc nghiệm về chủ đề hàm số mũ và hàm số logarit (Chương 2 – Giải tích 12) có đáp án. Các bài toán gồm các dạng: + Phần 1. Tập xác định của hàm số mũ và hàm số logarit + Phần 2. Đạo hàm của hàm số mũ và hàm số logarit + Phần 3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số mũ và hàm số logarit + Phần 4. Đồ thị hàm số mũ và hàm số logarit + Phần 5. Tính giá trị của biểu thức mũ và logarit + Phần 6. Một số bài toán thực tế liên quan đến hàm số mũ và hàm số logarit [ads]
Giải chi tiết các dạng toán lũy thừa, mũ và logarit - Nguyễn Bảo Vương
Tài liệu gồm 261 trang phân dạng, tuyển chọn và giải chi tiết các bài tập chủ đề lũy thừa, mũ và logarit (Chương 2 – Giải tích 12). Các dạng toán được đề cập bao gồm: + Bài tập tính đạo hàm của hàm số lũy thừa – mũ – logarit (117 bài toán) + Các bài toán liên quan đến tính đơn điệu – cực trị – tiệm cận hàm số lũy thừa – mũ – logarit (42 bài toán) + Các bài toán liên quan đến tập xác định của hàm số lũy thừa – mũ – logarit (95 bài toán) + Các bài toán liên quan đến công thức biến đổi lũy thừa – mũ – logarit (157 bài toán) + Các bài toán liên quan đến đồ thị hàm số lũy thừa – mũ – logarit (43 bài toán) [ads] + Các bài toán liên quan đến phương trình mũ – logarit (150 bài toán) + Các bài toán liên quan đến bất phương trình mũ – logarit (114 bài toán) + Các bài toán liên quan đến phương trình, bất phương trình mũ – logarit chứa tham số (43 bài toán) + Các bài toán liên quan đến tìm giá trị lớn nhất – giá trị nhỏ nhất, tính tổng của biểu thức (19 bài toán) + Các bài toán thực tế liên quan đến hàm lũy thừa – mũ – logarit (44 bài toán) Tài liệu do thầy Nguyễn Bảo Vương tổng hợp và biên soạn.
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Cao Tuấn
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit do thầy Cao Tuấn biên soạn gồm 21 trang. Nội dung tài liệu gồm các phần: A. KIẾN THỨC CẦN NHỚ I. LŨY THỪA 1. Lũy thừa với số mũ nguyên 2. Căn bậc n và lũy thừa với số mũ hữu tỉ 3. Lũy thừa với số mũ thực [ads] II. HÀM SỐ LŨY THỪA 1. Khái niệm hàm số lũy thừa 2. Đạo hàm của hàm số lũy thừa 3. Sự biến thiên của hàm số lũy thừa B. MỘT SỐ VÍ DỤ VỀ SỬ DỤNG KỸ THUẬT GIẢI NHANH C. VÍ DỤ MINH HỌA D. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN