Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

Sổ tay Hình học 10 - 11 - 12
Cuốn sổ tay Hình học 10 – 11 – 12 gồm 76 trang giúp học sinh tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Hình học lớp 10, 11, 12. Nội dung sổ tay bao gồm 5 chương: 1. Vectơ 2. Hệ thức lượng trong tam giác 3. Tọa độ trong không gian 2 chiều 4. Hình học không gian cổ điển 5. Tọa độ trong không gian 3 chiều  [ads] Bạn đọc có thể xem thêm Sổ tay Đại số và Giải tích 10 – 11 – 12
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10)
Bản Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10) Advance Version này chứa 90% tâm pháp và chiêu thức nhưng cũng giúp các hạ tăng công lực rất nhiều. Các bạn chưa nắm vững các kỹ thuật Casio cơ bản có thể tham khảo cuốn Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 – 8)  Danh mục sách : + Giải đề chính thức 2017 + Giải đề minh họa 2017 lần 3 + Các kỹ năng Casio cơ bản [ads] + Một số dạng toán lớp 11 + Hàm số + Mũ – Logarit + Nguyên hàm – Tích phân + Số phức + Hình Oxyz + Hình học không gian + Toán ứng dụng
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 - 8)
Với mong muốn giúp đỡ các em đẩy mạnh tốc độ làm bài, tránh mất thời gian vào những câu dễ, dành thời gian cho câu khó để đạt điểm cao hơn trong kỳ thi thì tác giả Nguyễn Thế Lực đã viết một cuốn Bí Kíp Casio được hệ thống tuyệt kỹ theo chuyên đề có lời giải chi tiết. Đây là bộ Skill Casio Basic Version dành cho các sĩ tử mong muốn đạt 5 – 8 điểm môn Toán trong kỳ thi THPT Quốc gia, các sĩ tử muốn luyện đạt điểm 8 – 9 – 10 có thể xem thêm cuốn Advance Version Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10). Nội dung sách : Đề minh họa lần 1, 2 và đề chính thức 2017 kèm đáp án và lời giải chi tiết Bộ tuyệt kỹ Casio 7 ngày 7 điểm Bộ Cửu Âm Chân Kinh: Thập Nhất Thần Chưởng + Tâm pháp 1. Lượng giác + Tâm pháp 2. Tổ hợp – Nhị thức Niu-tơn + Tâm pháp 3. Tu luyện xác suất + Tâm pháp 4. Dãy số, cấp số cộng và cấp số nhân + Tâm pháp 5. Giới hạn – Đạo hàm Bộ Cửu Dương Thần Công: Thập Nhị Đại Pháp [ads] Tâm pháp 1. Hàm số + Tuyệt kỹ 1. Casio giải nhanh sự biến thiên + Tuyệt kỹ 2. Casio hạ gục cực trị + Tuyệt kỹ 3. Casio xử nhanh Min – Max + Tuyệt kỹ 4. Ứng dụng tìm giới hạn của Casio search nhanh tiệm cận + Tuyệt kỹ 5. Casio support tiếp tuyến + Tuyệt kỹ 6. Kỹ thuật Casio giải toán tương giao đồ thị Tâm pháp 2. Mũ – Logarit + Tuyệt kỹ 7. Hàm số mũ – logarit dưới sự trị vì của Casio + Tuyệt kỹ 8. Casio tính, rút gọn, biểu diễn nhanh biểu thức + Tuyệt kỹ 9. Kỹ thuật Calc, Solve, Table hạ gục PT – BPT mũ – logarit Tâm pháp 3. Nguyên hàm – Tích phân + Tuyệt kỹ 10. Casio quyết chiến với nguyên hàm + Tuyệt kỹ 11. Tích phân thầm yêu Casio + Tuyệt kỹ 12. Casio xử đẹp “Tích phân chống Casio” Tâm pháp 4. Số phức + Tuyệt kỹ 13. Casio số phức cơ bản + Tuyệt kỹ 14. Giải nhanh phương trình số phức bằng Casio + Tuyệt kỹ 15. Casio hỗ trợ toán hình học số phức Tâm pháp 5. Hình học Oxyz + Tuyệt kỹ 16. Casio giải nhanh Oxyz Tâm pháp 6. Hình học không gian + Tuyệt kỹ 17. Luyện tay bo giải nhanh hình học 11 + 12 Tâm pháp 7. Toán ứng dụng
Sổ tay Đại số và Giải tích 10 - 11 - 12
Cuốn sổ tay gồm 84 trang giúp học sinh tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Đại số và Giải tích lớp 10, 11, 12. Nội dung sổ tay bao gồm 15 chương: + Chương 1. Mệnh đề và tập hợp + Chương 2. Hàm số bậc nhất và bậc hai + Chương 3. Phương trình và hệ phương trình + Chương 4. Bất đẳng thức và bất phương trình + Chương 5. Thống kê + Chương 6. Cung và góc lượng giác + Chương 7. Hàm số lượng giác [ads] + Chương 8. Tổ hợp và xác suất + Chương 9. Dãy số + Chương 10. Giới hạn + Chương 11. Đạo hàm + Chương 12. Khảo sát hàm số + Chương 13. Lũy thừa và logarit + Chương 14. Nguyên hàm và tích phân + Chương 15. Số phức Bạn đọc có thể xem thêm Sổ tay Hình học 10 – 11 – 12