Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lâm Thao - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lâm Thao, tỉnh Phú Thọ; đề thi gồm 02 trang, hình thức 30% trắc nghiệm (12 câu – 06 điểm) + 70% tự luận (04 câu – 14 điểm), thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lâm Thao – Phú Thọ : + Biết đa thức f x chia cho x + 3 thì dư 10, chia cho x − 2 thì dư 5, chia cho x 3 2 được thương là 2x và còn dư. Tìm đa thức f x và sắp xếp đa thức f x theo lũy thừa giảm dần của biến. + Cho ∆ABC vuông tại A (AB AC). Gọi M là trung điểm của cạnh BC, lấy điểm D thuộc tia đối của tia MA sao cho MD MA. Kẻ BI vuông góc với AD tại I CK vuông góc với AD tại K. a) Chứng minh rằng BI CK. b) Kẻ AH vuông góc với BC tại H MN vuông góc với BD tại N. Chứng minh rằng các đường thẳng CK AH MN đồng quy. c) Chứng minh rằng N là trung điểm của BD. d) Chứng minh rằng BC AB AC AH. + Chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Tìm các cặp số nguyên x y thoả mãn: 2 x xy y x 3 5 30. Cho các số nguyên tố p và q thoả mãn: 2 2 p q 2 17. Tính 4 15 p q. + Cho tam giác ABC có góc A 60 (góc B và góc C nhọn). Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. BD cắt CE tại I. Trên cạnh BC lấy F sao cho BF BE. Trên tia IF lấy M sao cho IM IB IC. a) Tính góc BIC và chứng minh ID IF. b) Chứng minh tam giác BCM là tam giác đều. c) Tìm điều kiện của tam giác ∆ABC để D và E cách đều đường thẳng BC. + Cho các số không âm x, y, z thoả mãn: x z 3 2022 và x y 2 2023. Tính giá trị lớn nhất của biểu thức: 1 2 Axyz.
Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Tìm các hệ số a, b biết rằng đa thức ax3 + bx2 − 3x + 3 chia cho (x − 1)(x + 1) được dư là 7. + Ba anh An, Bình, Dũng cùng góp vốn để thành lập công ty với tổng số tiền góp là 294 triệu đồng. Biết rằng 1/9 số tiền anh An góp bằng 1/8 số tiền anh Bình góp; 1/10 số tiền anh Dũng góp bằng 1/12 số tiền anh An góp. a) Tính số tiền góp của mỗi người. b) Theo thỏa thuận, lợi nhuận được chia theo tỷ lệ góp vốn. Năm 2022 lợi nhuận thu về của công ty là 120 triệu đồng. Em hãy tính số tiền lợi nhuận mà mỗi người nhận được trong năm 2022. + Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Lấy điểm E trên tia đối của tia CA sao cho CE = CA. Qua điểm B, kẻ đường thẳng song song với AC cắt đường thẳng DE tại F. a) Chứng minh rằng tam giác ABF cân. b) Tính số đo góc DAF? c) Tính tỷ số diện tích tam giác CDE và tam giác ADF?
Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Hiệp Hòa - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 03 năm 2023. Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Hiệp Hòa – Bắc Giang : + Cho p là tích của 2023 số nguyên tố đầu tiên. Chứng minh rằng p – 1 và p + 1 không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên các cạnh AB, AC lần lượt lấy điểm D và E sao cho AD = AE. Qua A và D kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. a) Chứng minh DI = BE b) Qua N kẻ đường thẳng song song với AC cắt AM tại F. Chứng minh NF = AI. c) Chứng minh AM = 1/2.NI. + Cho tam giác ABC có AB < AC < BC. Điểm E nằm trong tam giác. Chứng minh EA + EB + EC < AC + BC.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hưng Hà – Thái Bình : + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông là bao nhiêu, biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Tìm giá trị nhỏ nhất của biểu thức D = 2022/(2023 – |x – 2024|) với x thuộc Z. + Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt các tia AB tại E và tia AC tại F. Vẽ tia BM song song với EF (M thuộc AC). a) Chứng minh: tam giác ABM cân. b) Chứng minh: BE = CF = MF. c) Qua D kẻ đường thẳng vuông góc với BC cắt tia AH tại I. Chứng minh: IF vuông góc AC.