Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo TP.Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm; sẽ diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM: Cho phương trình \(x^3 + mx^2 - x + m - m^2 = 0\) với tham số m. Chứng minh rằng phương trình luôn có một nghiệm \(x = 1 - m\) với mọi giá trị của tham số m. Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt \(x_1\), \(x_2\), \(x_3\) sao cho \(x_1^2 + x_2^2 + x_3^2 = 3\). Cho tam giác ABC không cân nội tiếp đường tròn (O) có đường cao AD; AM là đường kính của đường tròn (O); K là hình chiếu của B lên AM. Chứng minh rằng DK vuông góc AC. Chứng minh rằng AEFC là tứ giác nội tiếp. Chứng minh rằng HE = 2IO với H là trực tâm của tam giác AEC và I là tâm đường tròn ngoại tiếp tứ giác AEFC. Tìm tất cả các số tự nhiên x, y và số nguyên tố p sao cho \(p^x = y^4 + 64\). Đây là những câu hỏi thú vị và chất lượng trong đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM. Chúc các em học sinh ôn tập và thi đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.