Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 - 2023 sở GDĐT Gia Lai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào ngày 14 tháng 02 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Gia Lai : + Cho hàm số 2 ymm xm (2) 2 8 có đồ thị là đường thẳng d. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt trục hoành và trục tung lần lượt tại A và B sao cho diện tích tam giác OAB bằng 2 (với O là gốc tọa độ). + Cho hai vòi nước chảy vào 1 bồn nước. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 3 giờ rồi dừng lại, sau đó cho vòi thứ hai chảy tiếp vào trong 8 giờ nữa thì đầy bồn. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 1 giờ rồi cho cả 2 vòi chảy tiếp trong 4 giờ nữa thì số nước đã chảy vào bằng 8 9 bồn. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu nước sẽ đầy bồn đó? + Cho đường tròn O đường kính BC R 2 và điểm A thay đổi trên O (điểm A không trùng với B C). Đường phân giác trong góc A của tam giác ABC cắt đường tròn O tại K. Hạ AH vuông góc với BC. a) Chứng minh rằng khi A thay đổi, tổng 2 2 AH KH luôn không đổi. Tính góc B của tam giác ABC biết 3 2 AH R. b) Đặt AH x. Tìm x sao cho diện tích tam giácOAH đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Củ Chi - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Củ Chi, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Củ Chi – TP HCM : + Cho hình vuông ABCD có AB = a, P và Q lần lượt là thuộc các cạnh AB, AD sao cho PCQ = 45°. Chứng minh rằng chu vi APQ = 2a. + Cho ABC vuông tại A (AB < AC), đường cao AH, phân giác AD. Trên AC lấy E sao cho AE = AB, BE cắt AH tại I. a. Chứng minh b. Cho DB = 15cm, DC = 20cm. Tính chu vi và diện tích của tứ giác AEDI. + Cho ABC cân tại A (A nhọn), H là trực tâm. Gọi E là trung điểm của AC. Lấy D trên BC sao cho BC = 3.CD. Chứng minh BE vuông góc HD.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Ba ngày 15 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Tìm tất cả số nguyên tố p có dạng p = a2 + b2 + c2 với a, b, c là các số nguyên dương thỏa mãn (a4 + b4 + c4) chia hết cho p. + Cho hình vuông MNPQ. Gọi A là điểm bất kì trên cạnh PQ (điểm A không trùng với hai điểm P, Q). Đường thẳng MA cắt đường thẳng NP tại điểm B. Qua M vẽ đường thẳng vuông góc với MA, cắt đường thẳng PQ tại C. 1. Chứng minh rằng 1/MA2 + 1/MB2 không đổi. 2. Gọi D, E lần lượt là hình chiếu của Q trên MA, MC. F là trung điểm AC. I là giao điểm của MF và DE. Chứng minh rằng: 1/MI = 1/QA + 1/QC. 3. Chứng minh rằng: cosACM = sinACB.cosABC + sinABC.cosACB. + Bên trong hình vuông có cạnh bằng 1 lấy n điểm phân biệt. Chứng minh rằng tồn tại một tam giác có đỉnh là đỉnh của hình vuông hoặc n điểm đó sao cho diện tích S của nó thỏa mãn bất đẳng thức: S ≤ 1/2(n + 1).
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tương Dương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tương Dương – Nghệ An : + Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab − 11b2 chia hết cho 5 thì a4 − b4 chia hết cho 5. + Cho hình vuông ABCD điểm N trên cạnh AB. Gọi E là giao điểm của CN và DA. Kẻ tia Cx vuông góc với CE cắt AB tại F, M là trung điểm của đoạn thẳng EF. Chứng minh rằng: a) CE = CF b) ACE = BCM c) Khi điểm N di chuyển trên cạnh AB (N không trùng với A và B) thì M chuyển động trên một đường thẳng cố định. + Cho a, b là hai số dương thỏa mãn a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức: F = (a3 + b3)2 + (a2 + b2) + 3/2ab.
Đề chọn HSG Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 11 tháng 11 năm 2022. Trích dẫn Đề chọn HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. + Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố.