Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo học kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Hiền - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Hiền, quận 7, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức 100% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kỳ 1 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Hiền – TP HCM : + Để ước tính tốc độ s (dặm/giờ) của một chiếc xe, cảnh sát sử dụng công thức s fd 30 (với d (tính bằng feet) là độ dài vết trượt của bánh xe và f là hệ số ma sát). Trên một đoạn đường (Có gắn bảng báo tốc độ bên bên) có hệ số ma sát là 0,73 và vết trượt của một xe 2 bánh sau khi thắng lại là 49,7 feet. Hỏi xe có vượt quá tốc độ theo biển báo trên đoạn đường đó không? Cho biết 1 dặm = 1,61 km. + Một học sinh có tầm mắt cao 1,6 m đứng trên sân thượng của một căn nhà cao 25 m nhìn thấy một chiếc xe dang đứng yên với góc nghiêng xuống 380. Hỏi chiếc xe cách căn nhà bao nhiêu mét (kết quả làm tròn đến hàng đơn vị). (Hình bên). + Cô Lan nhập 100 bộ quần áo với giá 200 000 đồng một bộ. Đợt 1, cô Lan bán được 80 cái áo với giá một bộ gấp 1,25 lần giá nhập vào. Đợt 2, cô bán 20 bộ quần áo còn lại với giá giảm 10% một bộ so với gía bán đợt 1. a/ Hỏi ở đợt 1, cô Lan bán 1 bộ quần áo lời bao nhiêu tiền? b/ Hỏi khi bán hết 100 bộ quần áo, cô Lan thu về được bao nhiêu tiền?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thăng Long – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề thi học kì 1 Toán 9 năm 2021 - 2022 trường THCS Trưng Vương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm 2021 – 2022 trường THCS Trưng Vương – Hà Nội.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 phòng GDĐT Đan Phượng - Hà Nội
Thứ Năm ngày 30 tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Đan Phượng, thành phố Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2021 – 2022. Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội : + Cho hàm số y = (m – 2)x + 2 – m (m là tham số) có đồ thị là đường thẳng (d). 1) Tìm m để hàm số đã cho là hàm số bậc nhất. 2) Vẽ đồ thị của hàm số tại m = 3. 3) Tìm m để (d) song song với đồ thị hàm số y = 2x + 3. + Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Bx. Qua điểm C trên nửa đường tròn (C khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Bx tại M. Tia AC cắt Bx ở N. 1) Chứng minh bốn điểm O, B, M, C cùng thuộc một đường tròn. 2) Chứng minh OM vuông góc với BC. 3) Chứng minh M là trung điểm của đoạn thẳng BN. 4) Kẻ CH vuông góc với AB tại H, AM cắt CH ở I. Chứng minh I là trung điểm của đoạn thẳng CH. + Cho x, y, z là các số nguyên dương có tổng bằng 2020. Tìm giá trị lớn nhất của biểu thức M = xyz.