Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bến Tre

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GD&ĐT Bến Tre Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GD&ĐT Bến Tre Việc tham gia kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông là một bước quan trọng trong hành trình học tập của các em học sinh tại tỉnh Bến Tre. Kỳ thi này không chỉ đánh dấu sự chuyển giao từ khối Trung học Cơ sở lên Trung học Phổ thông mà còn là cơ hội để các em được xét tuyển vào các trường phổ thông trên địa bàn. Môn thi Toán được coi là một trong những môn thi quan trọng và bắt buộc trong kỳ thi tuyển sinh này. Để giúp các thầy cô, phụ huynh và học sinh chuẩn bị tốt cho kỳ thi, chúng ta sẽ cùng tìm hiểu nội dung đề thi và lời giải chi tiết của môn Toán trong đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 sở GD&ĐT Bến Tre. Trong đề thi, có các câu hỏi như sau: Đề bài 1: Học sinh lớp 9A và lớp 9B tặng lại thư viện 738 quyển sách, biết rằng số sách giáo khoa nhiều hơn số sách tham khảo 166 quyển. Hỏi số học sinh của mỗi lớp? Đề bài 2: Tính thể tích của bồn chứa xăng trên xe, gồm hai nửa hình cầu và một hình trụ. Đề bài 3: Xác định tọa độ điểm giao nhau của hai đường thẳng và tính diện tích tam giác tạo thành bởi ba điểm này. Thông qua việc giải quyết các câu hỏi trong đề thi, các em sẽ được rèn luyện kỹ năng giải toán, tư duy logic và khả năng phản xạ trong việc giải quyết vấn đề. Hy vọng rằng thông tin trên sẽ giúp ích cho các em trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh Đề tuyển sinh chính thức cho kỳ thi vào lớp 10 môn Toán (chung) năm 2023 của trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết, được thực hiện bởi CLB Toán A1 gồm Nguyễn Nhất Huy, Trần Nguyễn Đức Nhật, Phan Anh Quân và Trịnh Huy Vũ. Một số câu hỏi trích dẫn từ Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội: Chứng minh rằng nếu 3n3 - 1011 chia hết cho 1008, thì n - 1 cũng chia hết cho 48. Chứng minh rằng trong hai đường tròn cắt nhau tại A và B, và một điểm P trên đường tròn thứ nhất, tam giác OBP và O'B'C đồng dạng. Chứng minh rằng tổng của các góc QBC và ABP bằng 90 độ khi hai đường thẳng OP và O'C giao nhau tại điểm Q. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi điểm P thay đổi. Chứng minh rằng tập hợp A gồm 30 số tự nhiên thỏa mãn điều kiện đặc biệt được mô tả có tối đa 10 phần tử. Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN Hà Nội sẽ là cơ hội tuyệt vời để các em học sinh thử thách bản thân và chuẩn bị cho hành trình học tập mới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Xin chào quý thầy cô và các bạn học sinh! Đây là đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 04/06/2023. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 của trường chuyên Quốc học Huế: 1. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. 2. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x^2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. 3. Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho. Chúc các em học sinh thực hiện kỳ thi tốt và đạt kết quả cao trong cuộc thi. Hãy cố gắng học tập và rèn luyện để trở thành những tài năng trong lĩnh vực Toán học!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Xin chào quý thầy, cô giáo và các em học sinh. Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh An Giang. Kỳ thi sẽ diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT An Giang: + Đồ thị bên đây biểu diễn hai hàm số f(x) = ax^2 và g(x) = -ax + b (với a và b là các số thực). Điểm chung thứ nhất của hai đồ thị có hoành độ là 1. Hãy tính hoành độ của điểm chung thứ hai của hai đồ thị. + Cho tam giác ABC có ba góc đều nhọn, BH là đường cao kẻ từ B (với H thuộc AC). Gọi D, E lần lượt là trung điểm của AB và AC, F là điểm đối xứng của điểm H qua DE. a. Chứng minh rằng tứ giác ABFH nội tiếp. b. Chứng minh FBA = EFH. c. Chứng minh rằng BF đi qua tâm đường tròn ngoại tiếp tam giác ABC. + Một nhà máy sản xuất ống thép, khi xuất xưởng các ống thép được bó lại tạo thành khối gồm 37 ống như hình vẽ. Các ống có dạng hình trụ đường kính đáy bằng nhau và bằng 10cm. Hãy tính độ dài của một sợi dây để buộc các ống thép lại với nhau.
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Yên Bái
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Yên Bái Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Yên Bái Chào mừng quý thầy cô giáo và các em học sinh! Sytu hân hạnh giới thiệu đến bạn đọc đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Yên Bái. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Yên Bái: + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2x - m - 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x12 + 1 = 2*2. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE, CF (D thuộc BC, E thuộc CA, F thuộc AB). Tiếp tuyến tại A của đường tròn (O) cắt DF tại M, MC cắt (O) tại I khác C, IB cắt MD tại N. a) Chứng minh rằng MA // EF. b) Chứng minh rằng MAF cân, tứ giác AINF nội tiếp. c) Chứng minh rằng MA2 = MN.MD. d) Gọi K là giao điểm của CF và đường tròn (O). Chứng minh rằng A, N, K thẳng hàng. + Cho một đa giác đều có 23 đỉnh. Tô màu các đỉnh của đa giác bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng luôn tồn tại ba đỉnh của đa giác được tô cùng màu và tạo thành một tam giác cân. Với nội dung kỳ thi phong phú và đa dạng như vậy, chúng ta cùng học tập và chuẩn bị tốt nhất để vượt qua thử thách này. Chúc các em học sinh thành công trong kỳ thi sắp tới!