Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán thi vào 10 chuyên năm 2021 trường ĐHKH Huế (vòng 2 - chuyên Tin)

Thứ Hai ngày 31 tháng 05 năm 2021, Hội đồng tuyển sinh lớp 10 trường Đại học Khoa học – Đại học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh lớp 10 THPT chuyên năm 2021 môn Toán vòng 2 – chuyên Tin. Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin) gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin) : + Để tính nhẩm bình phương của một số nguyên tận cùng bằng 5, bạn B thiết lập công thức sau: (a5) = (10a + 5)2 = 100a2 + 100a + 25 = 100a(a + 1) + 25. Hãy áp dụng công thức trên để tính 35^2, 95^2. Không dùng máy tính, cho biết 42025 là bình phương của số nguyên dương nào? Hãy giải thích. + Cho đường tròn (O) có dây cung BC cố định không đi qua tâm O. Điểm A di động trên (O) sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE, CF của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng: a. BCEF là tứ giác nội tiếp. b. KM.KA = KE.KF. c. Đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. + Trong một khu phố người ta làm các đường dưới dạng bàn cờ: Một bạn xuất phát từ vị trí A muốn đi đến vị trí B (như hình vẽ bên). Hỏi bạn đó có thể chọn được bao nhiêu cách đi khác nhau? Biết rằng, bạn này chỉ chọn đường đi ngắn nhất và chỉ đi trên các đường người ta đã làm.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương
Đề tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm đánh giá và phân loại học sinh lớp 9 theo năng lực học Toán, để từ đó các trường THPT tại tỉnh Hải Dương có cơ sở tuyển chọn các em vào lớp 10 theo tiêu chí của trường, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.
Đề tuyển sinh vào lớp 10 THPT 2018 - 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên)
Đề tuyển sinh vào lớp 10 THPT 2018 – 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên) gồm 1 trang với 10 bài toán tự luận, thí sinh làm bài trong 120 phút (không tính thời gian phát đề), kỳ thi được tổ chức vào ngày 01 tháng 06 năm 2018, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.