Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu

Nội dung Đề thi học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016-2017 Sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016-2017 Sở GD&ĐT Lai Châu Sytu xin gửi đến quý thầy cô và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 10 cấp tỉnh năm học 2016 – 2017 của Sở Giáo dục và Đào tạo UBND tỉnh Lai Châu. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016 – 2017 của Sở GD&ĐT Lai Châu: Với giá trị nào của m thì đồ thị của hàm số y = mx^3 - 6x cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 và 2 thỏa mãn điều kiện x^2 + 1 = x. Trong mặt phẳng, cho tam giác ABC có đỉnh A(1,3), đường phân giác trong góc A có phương trình xy = 20, tâm đường tròn ngoại tiếp tam giác ABC là I(3,6). Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O) có đường cao AH ⊥ BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH tại P và Q. Chứng minh rằng tam giác IPQ vuông. Đề thi trên đây sẽ giúp các em học sinh rèn luyện kỹ năng giải các bài toán logic, trắc nghiệm, và tư duy toán học một cách hiệu quả. Hy vọng rằng đề thi sẽ là công cụ hữu ích giúp các em chuẩn bị tốt cho kỳ thi học sinh giỏi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 10 năm 2023 - 2024 trường THPT Diễn Châu 2 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Diễn Châu 2, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Cấu trúc đề: PHẦN 1 – TRẮC NGHIỆM KHÁCH QUAN (8 điểm). A. TRẮC NGHIỆM NHIỀU LỰA CHỌN (12 câu – 3 điểm) – Thí sinh trả lời từ câu 1 đến câu 12, mỗi câu thí sinh chỉ chọn một phương án. B. TRẮC NGHIỆM ĐÚNG SAI (4 câu – 4 điểm) – Thí sinh trả lời từ câu 1 đến câu 4. Mỗi ý trong câu, thí sinh chọn đúng hoặc sai. C. TRẮC NGHIỆM TRẢ LỜI NGẮN (2 câu – 1 điểm) – Thí sinh trả lời từ câu 1 đến câu 2. PHẦN 2 – TỰ LUẬN (12 điểm).
Đề thi chọn HSG Toán 10 năm 2023 - 2024 trường THPT Đào Duy Từ - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 trường THPT Đào Duy Từ, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 10 năm 2023 – 2024 trường THPT Đào Duy Từ – Thanh Hóa : + Để tổ chức cho đoàn viên ưu tú khối 12 đi thực tế. Đoàn trường THPT Đào Duy Từ đã thuê xe để đưa 180 đoàn viên và 8 tấn hành lý đi thực tế. Nơi thuê xe có hai loại xe A và B trong đó xe A có 10 chiếc, xe B có 9 chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể trở tối đa 30 người và 0,8 tấn hàng, mỗi xe loại B có thể trở tối đa 20 người và 1,6 tấn hàng. Tìm tổng số xe cần thuê cả hai loại xe A và B sao cho chi phí thuê xe là thấp nhất. + Một người có một miếng đất hình tam giác ABC (hình vẽ dưới) với AB m 10 AC m 18 BC m 25. Ông ấy muốn chia miếng đất thành hai phần có diện tích bằng nhau cho hai người con của ông ta. Tuy nhiên vì phần đất phía AB AC là hai mặt đường nên người đó phải chia theo đoạn thẳng MN (hình vẽ) để 2 người con đều có 2 phần mặt đường. Sau đó người cha phải xây đoạn tường MN cao 2m để chia đất, chi phí để xây mỗi mét vuông tường hết 200.000 đồng. Số triệu đồng (làm tròn đến hàng phần trăm) chi phí ít nhất để xây đoạn tường MN bằng bao nhiêu? + Người ta dùng100 số nguyên dương đầu tiên để đánh số cho 100 tấm thẻ (mỗi thẻ đánh một số). Chọn ngẫu nhiên bốn thẻ trong 100 thẻ đó. Tính xác suất để chọn được bốn thẻ sao cho tích của các số ghi trên bốn thẻ chia hết cho 9 (quy tròn đến phần trăm).