Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 81 trang tuyển chọn câu hỏi và bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit có lời giải chi tiết do thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh biên soạn. Các bài tập trong tài liệu đa số là các bài toán có mức độ vận dụng cao, nhiều câu là các bài toán phân loại trong các đề thi thử môn Toán. Nội dung tài liệu : Bài 01. Lũy thừa – hàm số lũy thừa Bài 02. Logarit Bài 03. Hàm số mũ và hàm số logarit + Vấn đề 1. Tìm tập xác định của hàm số của hàm số mũ và hàm số logarit + Vấn đề 2. Tính đạo hàm của hàm số mũ và hàm số logarit + Vấn đề 3. Tính đơn điệu của hàm số mũ và hàm số logarit + Vấn đề 4. Đồ thị của hàm số mũ và hàm số logarit + Vấn đề 5. Tính giá trị biểu thức chứa mũ và logarit [ads] Bài 04. Phương trình mũ, phương trình logarit bất phương trình mũ, bất phương trình loagrit + Vấn đề 1. Phương trình, bất phương trình mũ + Vấn đề 2. Phương trình, bất phương trình logarit + Vấn đề 3. Phương trình, bất phương trình mũ – logarit chứa tham số Bài 05. Hệ phương trình mũ, hệ phương trình logarit Để giải hệ phương trình mũ, hệ phương trình logarit ta thường sửa dụng các phương pháp quen thuộc như: phương pháp thế, biến đổi hệ về phương trình đại số, phương pháp hàm số … Cuối cùng là tạo ra một hệ đơn giản và kết luận nghiệm.

Nguồn: toanmath.com

Đọc Sách

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu
Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa
Bài tập khối tròn xoay chọn lọc - Trần Sĩ Tùng
Tài liệu gồm 12 trang tuyển chọn các bài tập khối tròn xoay có đáp án, tài liệu do thầy Trần Sĩ Tùng biên soạn. I. Mặt cầu – Khối cầu 1. Định nghĩa 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Vị trí tương đối giữa mặt cầu và đường thẳng 4. Mặt cầu ngoại tiếp – nội tiếp 5. Xác định tâm mặt cầu ngoại tiếp khối đa diện [ads] + Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó + Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp – Xác định trục D của đáy (D là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy) – Xác định mặt phẳng trung trực (P) của một cạnh bên – Giao điểm của (P) và D là tâm của mặt cầu ngoại tiếp hình chóp II. Diện tích – Thể tích
Bài tập Mặt cầu - Khối cầu - Nguyễn Đăng Dũng
Tài liệu gồm 9 trang hướng dẫn phương pháp giải các dạng toán mặt cầu, khối cầu và các ví dụ minh họa có lời giải chi tiết. Phương pháp: + Muốn chứng minh nhiều điểm cùng thuộc một mặt cầu ta chứng minh các điểm đó cùng cách đều một điểm O cố định một khoảng R > 0 không đổi. + Muốn chứng minh một đường thẳng D tiếp xúc với maột mặt cầu S (O;R), ta chứng minh d (O;D) = R. + Muốn chứng minh một mặt phẳng (P) tiếp xúc với một mặt cầu S (O;R), ta chứng minh d (O;(P)) = R. + Tập hợp các điểm M trong không gian nhìn đoạn thẳng AB cố định dưới một góc vuông là mặt cầu đường kính AB. [ads]
Bài tập chọn lọc tọa độ không gian Oxyz - Lê Minh Tâm
Tài liệu gồm 636 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển tập các bài tập chọn lọc chuyên đề phương pháp tọa độ trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Hình học chương 3. MỤC LỤC : PHẦN ĐỀ BÀI. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 21. Chủ đề 3. Phương trình mặt phẳng Trang 57. Chủ đề 4. Phương trình đường thẳng Trang 85. Chủ đề 5. Vị trí tương đối Trang 141. PHẦN ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT. Chủ đề 1. Tọa độ không gian Oxyz Trang 2. Chủ đề 2. Phương trình mặt cầu Trang 68. Chủ đề 3. Phương trình mặt phẳng Trang 174. Chủ đề 4. Phương trình đường thẳng Trang 261. Chủ đề 5. Vị trí tương đối Trang 434.