Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2019 2020 phòng GD ĐT Tân Phú TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2019 2020 phòng GD ĐT Tân Phú TP HCM Bản PDF - Nội dung bài viết Đề thi học kì 1 lớp 9 môn Toán năm học 2019-2020 phòng GD ĐT Tân Phú TP HCM Đề thi học kì 1 lớp 9 môn Toán năm học 2019-2020 phòng GD ĐT Tân Phú TP HCM Để đáp ứng nhu cầu kiểm tra và đánh giá kết quả học tập của học sinh lớp 9 trong học kỳ 1 năm học 2019-2020, vào ngày ... tháng 12 năm 2019, Phòng Giáo dục và Đào tạo quận Tân Phú, TP Hồ Chí Minh đã tổ chức kỳ thi kiểm tra môn Toán cho học sinh lớp 9. Đề thi học kỳ 1 môn Toán lớp 9 năm học 2019-2020 của phòng GD&ĐT Tân Phú - TP HCM bao gồm 7 bài toán dạng tự luận trên 1 trang, thời gian làm bài thi là 90 phút (không tính thời gian giáo viên coi thi và phát đề). Đề thi có đáp án, lời giải và hướng dẫn chấm điểm cho học sinh. Một trong những bài toán trong đề thi là: "An rời nhà lúc 6 giờ sáng để đi từ nhà An đến Đà Lạt. Xe du lịch đón học sinh từ trường và di chuyển với vận tốc trung bình 45 km/h. Hỏi An cần xuất phát từ trường vào thời điểm nào để đến Đà Lạt vào 15 giờ, biết rằng khoảng cách từ nhà An đến Đà Lạt là 318km và trên đường xe sẽ nghỉ ngơi 1 giờ 30 phút." Ngoài ra, đề còn có các bài toán khác như vẽ đồ thị hàm số, tính lãi suất tiền gửi ngân hàng, và nhiều bài tập khác để học sinh thực hành và phát triển kỹ năng giải toán của mình. Đề thi học kỳ 1 môn Toán lớp 9 năm học 2019-2020 của phòng GD&ĐT Tân Phú - TP HCM là cơ hội để học sinh thể hiện và kiểm tra kiến thức, kỹ năng của mình trong môn Toán, đồng thời giúp họ chuẩn bị tốt nhất cho kỳ thi cuối học kỳ.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 9 năm học 2018 - 2019 phòng GDĐT Đống Đa - Hà Nội
Đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, các dạng toán bao gồm: tính giá trị biểu thức, giải phương trình, tính – rút gọn và tìm GTLN – GTNN của biểu thức, đồ thị hàm số bậc nhất, bài toán đường tròn … học sinh có 90 phút để giải đề, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội : + Cho x, y, z là các số dương thay đổi thỏa mãn: xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức T = 3x^2 + 3y^2 + z^2. + Cho hàm số bậc nhất y = (m – 1)x – 4 (d) (m khác 1). 1) Vẽ đồ thị hàm số khi m = 2. 2) Tìm m để (d) song song với đồ thị hàm số y = -3x + 2 (d1). 3) Tìm m để (d) cắt đồ thị hàm số y = x – 7 (d2) tại một điểm nằm ở bên trái trục tung. [ads] + Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm). 1) Chứng minh OC ⊥ BD. 2) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn. 3) Chứng minh góc CMD = CDA. 4) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Bình Thạnh - TP. HCM
THCS. giới thiệu đến thầy, cô và các em học sinh lớp 9 nội dung đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Bình Thạnh – TP. HCM, đề gồm 1 trang với 6 bài tập tự luận, học sinh làm bài trong vòng 90 phút (không tính thời gian giám thị phát đề).
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Sơn Tây - Hà Nội
Đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 15 tháng 12 năm 2018. THCS. xin chia sẻ nội dung đề thi đến quý thầy, cô và các em học sinh. Trích dẫn đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây – Hà Nội : + Cho hàm số bậc nhất y = (2m – 1)x + 3 có đồ thị là đường thẳng (d). a/ Tìm m để đường thẳng (d) song song với đường thẳng y = 2x – 1. b/ Vẽ đường thẳng (d) với m vừa tìm được trên mặt phẳng tọa độ Oxy. c/ Tìm m để đường thẳng (d) và hai đường thẳng y = x + 3 và y = 2x + 1 đồng quy. [ads] + Từ một điểm A ở ngoài đường tròn (O;R), vẽ tiếp tuyến AE với đường tròn (O), (E là tiếp điểm). Vẽ dây EH vuông góc với OA tại M. a/ Biết bán kính R = 5cm; OM = 3cm. Tính độ dài dây EH. b/ Chứng minh AH là tiếp tuyến của đường tròn (O). c/ Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O), (F là tiếp điểm). Chứng minh ba điểm E, O, F thẳng hàng và BF.AE = R. d/ Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AD tại Q. Chứng minh AE = DQ.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc : + Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm các giá trị của m và k để đồ thị các hàm số là: a) Hai đường thẳng song song với nhau. b) Hai đường thẳng cắt nhau tại một điểm trên trục tung. + Cho đường tròn (O; 6cm) và điểm M cách O một khoảng bằng 10cm. Qua M kẻ tiếp tuyến MA với đường tròn O (A là tiếp điểm). Qua A kẻ đường thẳng vuông góc OM cắt OM và (O) lần lượt tại H và B. a) Tính độ dài đoạn thẳng AB. b) Chứng minh MB là tiếp tuyến của (O). c) Lấy N là điểm bất kì trên cung nhỏ AB kẻ tiếp tuyến thứ 3 với đường tròn cắt MA, MB lần lượt tại D và E. Tính chu vi tam giác MDE. + Tìm giá trị nhỏ nhất của biểu thức.