Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hãy cùng Sytu khám phá đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi dự kiến diễn ra vào ngày thứ Năm, 16 tháng 06 năm 2022. Đề thi được thực hiện bởi thầy giáo Nguyễn Hải Dương, giáo viên Toán tại trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Đắk Lắk: Hãy giải quyết câu đố về việc mua sách của bạn An để ôn thi tuyển sinh, cùng những bài toán thú vị khác về tam giác và parabol để rèn luyện khả năng giải toán của bạn. Chúng ta sẽ cùng tìm ra giá niêm yết của cuốn sách tham khảo Toán và sách tham khảo Ngữ Văn mà An mua, thông qua việc giảm giá và tăng giá của cửa hàng sách. Ngoài ra, chúng ta cũng sẽ cùng khám phá những bài toán thú vị về tam giác và parabol, từ việc chứng minh tứ giác nội tiếp đến việc xác định tham số để đường thẳng cắt parabol. Hãy tham gia Chương trình luyện thi Đề tuyển sinh môn Toán cùng Sytu để rèn luyện kỹ năng giải toán, chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công trên con đường học tập và nghệ thuật giải toán!

Nguồn: sytu.vn

Đọc Sách

Đề vào lớp 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương. Trích dẫn đề vào lớp 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Nguyễn Trãi – Hải Dương : + Cho đa thức P(x) với các hệ số nguyên thỏa mãn P(2021).P(2022) = 2023. Chứng minh rằng biểu thức P(x) – 2024 không có nghiệm nguyên. + Cho đường tròn (O) và dây cung AB không đi qua tâm O. Gọi M là điểm chính giữa của cung nhỏ AB; D là một điểm thay đổi trên cung lớn AB (D khác A và B); DM cắt AB tại C. a. Chứng minh rằng MB.BD = MD.BC; b. Chứng minh rằng MB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD và khi điểm D thay đổi thì tâm đường tròn ngoại tiếp tam giác BCD nằm trên một đường thẳng cố định. + Cho hình thoi ABCD có AB = 2. Gọi R1 và R2 lần lượt là bán kính đường tròn ngoại tiếp các giác ABC và ABD. Chứng minh rằng R1 + R2 >= 2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 + 2(m + 1)x + 2m + 1 = 0 (m là tham số). a. Tìm m để phương trình có một nghiệm bằng -3, tìm nghiệm còn lại. b. Với giá trị nào của m thì phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn x12 + x22 = 2. + Cho tam giác ABC có ba góc nhọn, các đường cao AE, BF và CN cắt nhau tại H (E thuộc BC, F thuộc AC, N thuộc AB). a. Chứng minh tứ giác CEHF nội tiếp. b. Kéo dài FE cắt đường tròn đường kính BC tại M. Chứng minh BM = BN. c. Biết AH = BC. Tính số đo góc A của tam giác ABC. + Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 80 m so với mặt đất. Thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin ở vị trí thấp nhất của đu quay thì sau 10 phút người đó ở độ cao bao nhiêu mét so với mặt đất (giả sử đu quay quay đều)?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Tây Ninh : + Căn cứ diễn biến mực nước hồ Dầu Tiếng và tình hình khí tượng thủy văn trên lưu vực, để chủ động phòng chống lũ cho công trình và khu vực hạ du, Công ty khai thác thủy lợi hồ Dầu Tiếng dự định xả một lượng nước ở hồ với lưu lượng 15 triệu 3 m trong một ngày. Do tình hình thời tiết có chiều hướng xấu Công ty đã quyết định điều chỉnh lưu lượng xả lên 20 triệu 3 m mỗi ngày nên đã hoàn thành công việc sớm hơn thời gian dự kiến 2 ngày. Hỏi Công ty đã xả bao nhiêu 3 m nước? + Cho tam giác ABC có ba góc nhọn và BAC 60 nội tiếp trong đường tròn (O). Trên đoạn thẳng OA lấy điểm I (IA IO) đường thẳng qua I vuông góc OA cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh tứ giác BCNM nội tiếp. + Cho đường tròn (O) có đường kính AB 2 2022. Lấy điểm C trên (O) sao cho AC BC. Gọi H là hình chiếu vuông góc của C trên AB (H khác A). Kẻ HK vuông góc BC tại K. Tính 2 2 HK OK.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian giám thị phát đề); kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho phương trình x2 + 3x – 1 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình, hãy tính giá trị của biểu thức T. + Trong kỳ SEA Games 31 tổ chức tại Việt Nam, thú sao la được chọn làm linh vật. Một phân xưởng được giao sản xuất 420 thú nhồi bông sao la trong một thời gian dự định để làm quà tặng. Biết rằng nếu mỗi giờ phân xưởng sản xuất thêm 5 thú nhồi bông sao la thì sẽ rút ngắn được thời gian hoàn thành công việc là 2 giờ. Tính thời gian dự định của phân xưởng? + Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K thuộc AB, D thuộc AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I. a) Chứng minh CDKI là tứ giác nội tiếp. b) Chứng minh AD.AC = DH.AB. c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.