Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2022 2023 trường THPT Lê Lợi Quảng Trị

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2022 2023 trường THPT Lê Lợi Quảng Trị Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chính thức cuối học kì 1 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Lê Lợi, tỉnh Quảng Trị; đề mã đề 001 được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút; đề có đáp án và hướng dẫn chấm mã đề 001. Trích dẫn Đề cuối học kì 1 Toán lớp 11 năm 2022 – 2023 trường THPT Lê Lợi – Quảng Trị : + Mệnh đề nào sau đây sai? A. Mặt phẳng được hoàn toàn xác đinh khi biết nó chứa hai đường thẳng cắt nhau. B. Mặt phẳng được hoàn toàn xác đinh khi biết nó chứa hai đường thẳng song song. C. Mặt phẳng được hoàn toàn xác đinh khi biết nó đi qua ba điểm không thẳng hàng. D. Mặt phẳng được hoàn toàn xác đinh khi biết nó đi qua một điểm và chứa một đường thẳng. + Lớp 12A có 32 học sinh, trong đó có 10 học sinh giỏi, 16 học sinh khá và 6 học sinh trung bình. Cần chọn 5 học sinh vào ban cán sự lớp. Tính xác suất để: a) Chọn được 2 học sinh khá và không có học sinh trung bình. b) Chọn được 1 học sinh trung bình và nhiều nhất 2 học sinh khá. + Cho hình chóp S ABCD có đáy ABCD là hình bình hành. Giao tuyến của (SAD) và(SBC) là: A. Đường thẳng qua S và song song với AB. B. Đường thẳng SO với O là tâm của hình bình hành. C. Đường thẳng qua S và cắt AD. D. Đường thẳng qua S và song song với BC. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.