Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giải toán bằng cách lập phương trình

Tài liệu gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề giải toán bằng cách lập phương trình, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. KIẾN THỨC CẦN NHỚ Bước 1: Lập phương trình: + Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. + Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. + Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. II. BÀI TẬP MINH HỌA Phương pháp chung: + Bước 1: Kẻ bảng nếu được, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. + Bước 2: Giải thích từng ô trong bảng, lập luận để thiết lập phương trình bậc hai. + Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: + Dạng 1: Toán chuyển động. + Dạng 2: Toán năng suất. + Dạng 3: Toán làm chung công việc. + Dạng 4: Toán có nội dung hình học. + Dạng 5: Dạng toán có chứa tham số. + Dạng 6: Toán về tỉ lệ chia phần. + Dạng 7: Dạng toán liên quan đến số học. + Dạng 8: Dạng toán có nội dung vật lý, hóa học.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Nội dung Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng Bản PDF - Nội dung bài viết Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu hướng dẫn về diện tích và thể tích của hình lăng trụ đứng Tài liệu này bao gồm 09 trang chứa thông tin chi tiết về việc tính diện tích xung quanh và thể tích của hình lăng trụ đứng. Nó tóm tắt lý thuyết về trọng tâm cần nắm vững, phân loại các dạng toán, và cung cấp hướng dẫn giải từ cơ bản đến nâng cao. Tài liệu cũng chứa các bài tập được lựa chọn kỹ lưỡng, kèm theo đáp án và lời giải chi tiết. Đây sẽ là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 với các khái niệm về hình lăng trụ đứng và hình chóp đều.
Chuyên đề hình lăng trụ đứng
Nội dung Chuyên đề hình lăng trụ đứng Bản PDF - Nội dung bài viết Chuyên đề hình lăng trụ đứng Chuyên đề hình lăng trụ đứng Tài liệu bao gồm 09 trang, tập trung vào việc tóm tắt lý thuyết cần thiết về hình lăng trụ đứng, cung cấp phân dạng và hướng dẫn giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đều đi kèm đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 về hình lăng trụ đứng và hình chóp đều. Phần bài giảng trong tài liệu giúp củng cố kiến thức về hình lăng trụ đứng thông qua ví dụ minh họa. Ngoài ra, phần phương pháp giải toán giúp học sinh hiểu rõ hơn cách tiếp cận và giải quyết các bài toán liên quan đến chủ đề này. Cuối cùng, phiếu bài tự luyện là công cụ hữu ích giúp học sinh ôn tập và kiểm tra kiến thức của mình.
Chuyên đề hình hộp chữ nhật
Nội dung Chuyên đề hình hộp chữ nhật Bản PDF - Nội dung bài viết Chuyên đề hình hộp chữ nhật Chuyên đề hình hộp chữ nhật Tài liệu này bao gồm 12 trang, tập trung vào tóm tắt lý thuyết quan trọng cần hiểu về chuyên đề hình hộp chữ nhật. Ngoài ra, tài liệu còn cung cấp hướng dẫn phân loại dạng toán và cách giải, kèm theo việc lựa chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Đồng thời, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ hơn cách giải các bài tập. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8, đặc biệt là chương 4 về hình lăng trụ đứng và hình chóp đều. Nội dung bài giảng cung cấp kiến thức nền vững và đáp ứng nhu cầu học tập của học sinh. Phần phương pháp giải toán chia thành 2 dạng: Chứng minh các tính chất của hình hộp chữ nhật và tính toán các yếu tố liên quan đến hình hộp chữ nhật. Qua tài liệu này, học sinh sẽ nắm vững kiến thức cơ bản và nâng cao về hình hộp chữ nhật, từ đó phát triển kỹ năng giải bài tập và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu cũng giúp học sinh rèn luyện khả năng tư duy logic và phân tích trong quá trình giải toán hình học.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Nội dung Chuyên đề các trường hợp đồng dạng của tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề các trường hợp đồng dạng của tam giác vuông Chuyên đề các trường hợp đồng dạng của tam giác vuông Chuyên đề này bao gồm 15 trang tài liệu, tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến đồng dạng của tam giác vuông. Nội dung tài liệu tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông: Tam giác vuông đồng dạng khi có một góc nhọn bằng nhau và hai cạnh góc vuông tỉ lệ với nhau. 2. Dấu hiệu nhận biết hai tam giác vuông đồng dạng: Nếu cạnh huyền và một cạnh góc vuông của một tam giác vuông tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông khác thì hai tam giác đó đồng dạng. 3. Tỉ số các đường cao, trung tuyến, phân giác của hai tam giác đồng dạng: Tỉ số đường cao, trung tuyến, phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng: Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1: Chứng minh hai tam giác vuông đồng dạng bằng cách áp dụng trường hợp đồng dạng của hai tam giác thường hoặc sử dụng đặc biệt nhận biết của tam giác vuông. Dạng 2: Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ. Dạng 3: Tính tỉ số diện tích của hai tam giác đồng dạng bằng cách sử dụng định lý tỉ số diện tích cho hai tam giác đồng dạng. Đây là tài liệu học hữu ích giúp học sinh hiểu rõ về các trường hợp đồng dạng của tam giác vuông, từ đó nắm vững kiến thức và rèn luyện khả năng giải các dạng bài tập liên quan.