Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 2024 trường THPT Kiến Thụy Hải Phòng
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 2024 trường THPT Kiến Thụy Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán lớp 12 năm học 2023 – 2024 trường THPT Kiến Thụy, thành phố Hải Phòng; đề thi có đáp án và lời giải chi tiết mã đề 466 469 472 475 478 481 484 487. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2023 – 2024 trường THPT Kiến Thụy – Hải Phòng : + Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông SAB có diện tích bằng 2 4a. Góc giữa trục SO và mặt phẳng SAB bằng 30°. Diện tích xung quanh của hình nón đã cho bằng? + Cho hàm số bậc bốn y fx có đồ thị hàm số y fx như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2023] để hàm số 4 2 gx f x m 2 có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là? + Cho các hàm số log a b y xy x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số log a b y xy x lần lượt tại HMN. Biết rằng HM MN. Mệnh đề nào sau đây đúng? File WORD (dành cho quý thầy, cô):
Đề kiểm tra định kì lớp 12 môn Toán năm 2023 2024 trường Việt Anh 2 Bình Dương
Nội dung Đề kiểm tra định kì lớp 12 môn Toán năm 2023 2024 trường Việt Anh 2 Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì môn Toán lớp 12 năm học 2023 – 2024 trường Trung – Tiểu học Việt Anh 2, tỉnh Bình Dương; đề thi có đáp án trắc nghiệm mã đề 165 – 294 – 368 – 450. Trích dẫn Đề kiểm tra định kì Toán lớp 12 năm 2023 – 2024 trường Việt Anh 2 – Bình Dương : + Cho các hàm số x 1 (C): y a và 2 b (C): y log x có đồ thị như hình vẽ dưới đây. Đường thẳng 1 (d): y 2 cắt 1 (C) trục Oy 2 (C) lần lượt tại M, H, N. Biết H là trung điểm của MN và MNPQ có diện tích 3 2 (với P Q lần lượt là hình chiếu vuông góc của N M trên trục hoành). Giá trị của biểu thức 3 T a 4b bằng bao nhiêu? + Gọi y f(x) là hàm số của đồ thị trong hình bên. Tìm tất cả những giá trị của số thực m để phương trình f(x) m có đúng hai nghiệm phân biệt. + Cho khối chóp đều S.ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45°. Tính thể tích của khối chóp S.ABC theo a. File WORD (dành cho quý thầy, cô):
Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bắc Ninh
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào chiều thứ Năm ngày 25 tháng 01 năm 2024, nhằm kiểm tra kiến thức học sinh lớp 12 trong quá trình ôn thi tốt nghiệp THPT 2024. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Cho khối trụ có chiều cao 20 cm. Cắt khối trụ bởi một mặt phẳng được thiết diện là hình elip có độ dài trục lớn bằng 10cm. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích là V1, nửa dưới có thể tích là V2. Cho biết AM = 12 (cm), AQ = 8(cm), PB = 14 (cm), BN = 6 (cm) (như hình vẽ), tỉ số V1/V2 bằng? + Cho hai mặt cầu (S1), (S2) có cùng tâm I và bán kính lần lượt là 2 và 10. Xét tứ diện ABCD có các điểm A, B thay đổi thuộc (S1) còn C, D thay đổi thuộc (S2). Thể tích lớn nhất của khối tứ diện ABCD bằng? + Cho hàm số f(x) = -x3 + ax2 – bx + 1 với a, b là các số nguyên. Biết rằng phương trình f(x) = 0 và phương trình ƒ(ƒ(f(x))) = 0 có ít nhất một nghiệm chung. Số cặp (a;b) để hàm số y = f(x) không có điểm cực trị là?
Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Vĩnh Phúc
Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng các môn văn hóa cho học sinh lớp 12 môn Toán lớp 12 lần 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào thứ Tư ngày 10 tháng 01 năm 2024.