Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào 10 môn Toán (chuyên Tin) 2022 2023 trường chuyên Hùng Vương Phú Thọ

Nội dung Đề vào 10 môn Toán (chuyên Tin) 2022 2023 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề thi môn Toán (chuyên Tin) vào lớp 10 trường chuyên Hùng Vương Phú Thọ Đề thi môn Toán (chuyên Tin) vào lớp 10 trường chuyên Hùng Vương Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 của trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không tính thời gian phát đề). Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi môn Toán (chuyên Tin) vào lớp 10 năm học 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ: - Cho hai số thực a và b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau, 3n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. - Cho tam giác ABC nội tiếp đường tròn (O) có đường cao AA1, đường trung tuyến BB1 và đường phân giác trong CC1. Gọi DEF lần lượt là giao điểm của AA1, BB1, CC1 với (O). Biết ABC là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE, N là trung điểm của đoạn thẳng CD, I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA/JF. - Chứng minh rằng nếu m, n là hai số tự nhiên thỏa mãn m^2n^2 = 2022^2023, thì 2022 - 1/mn là số chính phương. Quý thầy cô có thể tải file Word để xem đầy đủ đề thi và lời giải.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 28 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Nhằm động viên khen thưởng các em có thành tích học sinh giỏi nhà trường tổ chức cho các em đi tham quan, ngoại khóa tại một khu du lịch với giá vé ban đầu mỗi người là 375 000 đồng. Để ghi nhận sự cố gắng của các em học sinh và giáo viên bồi dưỡng, công ty du lịch đã giảm giá vé 10% cho mỗi giáo viên và 30% cho mỗi học sinh. Tổng chi phí của chuyến đi sau khi giảm giá là 12 487 500 đồng. Tính số học sinh, số giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên. + Cho tam giác MNP vuông tại M, đường cao MH. Biết HN = 4cm, HP = 16cm. Tính MN; MH và độ dài đường tròn ngoại tiếp tam giác MNP. + Cho đường tròn tâm O, một điểm A nằm ngoài đường tròn. Từ A kẻ đường thẳng đi qua tâm O, cắt đường tròn tại hai điểm M và N (M nằm giữa A và N). Kẻ đường thẳng thứ hai đi qua A, cắt đường tròn tại hai điểm phân biệt C, D (C nằm giữa A và D, C khác M). Đường thẳng vuông góc với AM tại A cắt đường thẳng NC tại B, đường thẳng BM cắt đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn. b) Chứng minh DE vuông góc với AN.
Đề thi thử Toán vào 10 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào 10 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho phương trình: x2 + (2m + 1)x + m2 – 1 = 0 (1) (với x là ẩn số). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: (x1 − x2)2 = x1 – 5×2. + Từ một điểm A nằm ngoài đường tròn (O; R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M; gọi I, K lần lượt là hình chiếu vuông góc của M trên đường thẳng AB và AC. 1. Chứng minh: AIMK là tứ giác nội tiếp đường tròn. 2. Vẽ MP vuông góc BC (P thuộc BC). Chứng minh: MPK = MBC. 3. Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất. + Cho a là số thực dương. Tìm giá trị nhỏ nhất của biểu thức T.
Đề thi thử Toán vào 10 lần 1 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo Tân Kỳ, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào 10 lần 1 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho phương trình bậc hai x2 – 7x + 5 = 0 có hai nghiệm phân biệt x1; x2. Không giải phương trình hãy tính giá trị của biểu thức T. + Một xe khách đi từ A đến B với thời gian dự định. Nếu xe khách đi với vận tốc 40 km/h thì đến B muộn hơn so với thời gian dự định là 36 phút. Nếu xe khách đi với vận tốc 60 km/h thì đến B sớm hơn so với thời gian dự định là 24 phút. Tính độ dài quảng đường AB và thời gian dự định của xe khách. + Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Vẽ đường cao AD; gọi E, F lần lượt là hình chiếu của A trên các tiếp tuyến tại B, C của đường tròn (O). a) Chứng minh ADBE là tứ giác nội tiếp. b) Chứng minh AD2 = AE.AF c) Gọi M là giao điểm của các tiếp tuyến tại B và C của đường tròn (O). P là giao điểm thứ hai của MA và đường tròn (O). Qua điểm P kẻ đường thẳng vuông góc với OB cắt BC tại I, cắt AB tại Q. Chứng minh rằng I là trung điểm của PQ.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THCS Dịch Vọng, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật trước đây có chu vi là 124m. Người ta mở rộng chiều dài thêm 5m và chiều rộng thêm 3m. Do đó diện tích mảnh vườn tăng thêm 255 m². Hỏi mảnh vườn ban đầu có diện tích là bao nhiêu? + Tính diện tích sơn cần dùng để sơn phủ kín mặt ngoài của một đoạn ống nước hình trụ có chiều dài là 4m và đường kính đáy bằng 20cm (biết pi = 3,14. Làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) và dây BC cố định (BC không đi qua tâm O). Gọi A là điểm chính giữa cung nhỏ BC, OA cắt BC tại I, lấy điểm E thuộc cung lớn BC. Nối AE cắt BC tại D. Kẻ CH vuông góc với AE tại H, CH cắt BE tại M. a) Chứng minh bốn điểm A, I, H, C cùng thuộc một đường tròn. b) Chứng minh ABD đồng dạng với AEB, từ đó suy ra AB2 = AE.AD c) Chứng minh đường tròn ngoại tiếp ABDE tiếp xúc với AB. Tìm vị trí của điểm E để diện tích AMAC lớn nhất.