Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ II Toán 12 năm 2017 - 2018 trường THPT Lê Hồng Phong - Khánh Hòa

Đề kiểm tra học kỳ II Toán 12 năm 2017 – 2018 trường THPT Lê Hồng Phong – Khánh Hòa mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề kiểm tra học kỳ II Toán 12 năm 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (10;6;-2), B(5;10;-9) và mặt phẳng (α): 2x + 2y + z – 12 = 0. Điểm M di động trên mặt phẳng (α) sao cho MA, MB luôn tạo với (α) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn (C) cố định. Cao độ của tâm đường tròn (C) là? [ads] + Trong không gian Oxyz cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4z + 1 = 0. Mệnh đề nào sau đây đúng? A. (S) có tâm I(1;-2;0), bán kính R = 2. B. (S) có tâm I(1;0;-2), bán kính R = 2. C. (S) đi qua điểm M (-1;0;0). D. Điểm O nằm bên trong mặt cầu (S). + Một hình vuông có cạnh bằng 2b cm (b > 0). Người ta đã sử dụng bốn đường parabol có chung đỉnh tại tâm của hình vuông để tạo ra một bông hoa có 4 cánh (được tô đậm như hình vẽ). Tìm b để diện tích của bông hoa bằng 4800 cm2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình (H) giới hạn tạo bởi đồ thị hàm số y x x 3, trục hoành và hai đường x 1 và x 2. Quay hình (H) quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành. + Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua điểm A(1;2;3) và có vectơ chỉ phương u. + Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;2;3) và bán kính bằng độ dài đoạn thẳng AB với A(1;-1;2) và B(2;1;4).
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Võ Văn Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?