Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên - Hà Tĩnh

giới thiệu đến thầy, cô và các em học sinh lớp 12 đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh, đề thi do trường THPT Nguyễn Trung Thiên (Hà Tĩnh) phối hợp cùng trường THPT Nguyễn Đình Liễn (Hà Tĩnh) biên soạn, nhằm giúp các em học sinh khối 12 của trường tiếp tục được rèn luyện nâng cao kiến thức và kỹ năng giải Toán, để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh mã đề 001 có cấu trúc và độ khó tương đương đề thi tham khảo THPT Quốc gia môn Toán năm 2019, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh : + Người ta cần trồng một vườn hoa (phần tô đậm như hình vẽ). Biết đường viền ngoài và đường viền trong khu đất trồng hoa là hai đường elip. Đường elip ngoài có độ dài trục lớn và độ dài trục bé lần lượt là 10m và 6m. Đường elip trong cách đều elip ngoài một khoảng bằng 2dm (hình vẽ). Kinh phí cho mỗi m2 trồng hoa là 100.000 đồng. Tổng số tiền (đơn vị đồng) dùng để trồng vườn hoa gần với số nào sau đây? [ads] + Đoàn trường THPT Nguyễn Đình Liễn tổ chức giao lưu bóng chuyền học sinh giữa các lớp nhân dịp chào mừng ngày 26/03. Sau quá trình đăng kí có 10 đội tham gia thi đấu từ 10 lớp, trong đó có lớp 10A1 và 10A2, các đội chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội 10A1 và 10A2 thuộc hai bảng đấu khác nhau. + Một người gửi tiết kiệm vào ngân hàng 1 tỷ đồng với lãi suất 0.5%/ tháng (lãi tính theo từng tháng và cộng dồn vào gốc). Kể từ lúc gửi sau mỗi tháng vào ngày ngân hàng tính lãi người đó rút 10 triệu đồng để chi tiêu (nếu tháng cuối cùng không đủ 10 triệu đồng thì rút hết). Hỏi trong bao lâu kể từ ngày gửi người đó rút hết tiền trong tài khoản? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường Trần Bình Trọng - Khánh Hòa lần 2
Đề thi thử Toán THPTQG 2018 trường Trần Bình Trọng – Khánh Hòa lần 2 mã đề 132 gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, không tính thời gian phát đề, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường Trần Bình Trọng – Khánh Hòa lần 2 : + Hiện nay (năm 2018) Huyện Cam Lâm có tổng dân số là 105759 người. Biết tỉ lệ tăng dân số bình quân hàng năm là 1,2%. Hỏi sau 5 năm, tổng dân số của Huyện Cam Lâm sẽ đạt bao nhiêu người (kết quả làm tròn đến hàng trăm)? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SC, N thuộc cạnh SD sao cho SN = 3ND. Mặt phẳng (AMN) cắt hình chóp thành hai phần, gọi thể tích phần chứa đỉnh S là v, thể tích hình chóp S.ABCD là u. Tính tỷ số v/u. + Trong một bài thi trắc nghiệm khách quan gồm 50 câu. Mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Một học sinh chuẩn bị bài không tốt nên làm bài bằng cách với mỗi câu đều chọn ngẫu nhiên một phương án trả lời. Tính xác suất để học sinh đó trả lời không đúng cả 50 câu.
Đề thi thử Toán THPTQG 2018 trường THPT An Lão - Hải Phòng lần 3
Đề thi thử Toán THPTQG 2018 trường THPT An Lão – Hải Phòng lần 3 mã đề 105 được biên soạn nhằm giúp học sinh củng cố và nâng cao kiến thức, kỹ năng giải Toán trắc nghiệm để chuẩn bị cho kỳ thi THPT Quốc gia sắp tới, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT An Lão – Hải Phòng lần 3 : + Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức s(t) = s(0).2^t, trong đó s(0) là số lượng vi khuẩn A ban đầu, s(t) là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là 10 triệu con? [ads] + Có 3 chiếc hộp A, B, C. Hộp A chứa 4 bi đỏ, 3 bi trắng. Hộp B chứa 3 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 2 bi vàng. Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một bi từ hộp đó. Tính xác suất để lấy được một bi đỏ. + Từ một đội văn nghệ gồm 5 nam và 8 nữ cần lập một nhóm gồm 4 người hát tốp ca. Xác suất để trong 4 người được chọn đều là nam bằng?
Đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú - Lâm Đồng
Đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú – Lâm Đồng mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, đề gồm 6 trang, thí sinh làm bài trong vòng 90 phút. Trích dẫn đề thi thử Toán THPT Quốc gia 2018 trường THPT Trần Phú – Lâm Đồng : + Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ vua. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng. [ads] + Cho khai triển(x – 2)^n thành một đa thức. Biết rằng trong khai triển đó nếu xếp theo thứ tự với số mũ giảm dần của x thì hệ số của số hạng thứ ba gấp 60 lần hệ số của số hạng thứ nhất. Khi đó hệ số của số hạng chứa x^5 là? + Cho hàm số y = f(x) có bảng biến thiên như sau, khẳng định nào sau đây đúng: A. Điểm cực đại của đồ thị hàm số là 1. B. Hàm số nghịch biến trên (-3;1). C. Đồ thị hàm số y = f(x) có hai đường tiệm cận. D. Đồ thị hàm số y = f(x) cắt trục hoành tại 3 điểm phân biệt.
Đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2
Đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2 mã đề 132 gồm 5 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Thị Xã Quảng Trị lần 2 : + Cho hai đường tròn (C), (C’) lần lượt có phương trình x^2 + y^2 – 2x – 4y + 4 = 0, x^2 + y^2 + 2x =0. Gọi (a;b;c) là bộ ba hằng số để đồ thị hàm số y = (ax + b)/(x + c) đi qua tâm của hai đường tròn (C), (C’) và mỗi đường tiệm cận của đồ thị là tiếp tuyến chung của hai đường tròn (C), (C’). Tính P = a + b + c. [ads] + Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 3) là một hình tròn có đường kính bằng √(36 – 3x^2). + Cho hàm số y = lnx (C) và đường thẳng d: x – y + 1 = 0. M là điểm di động trên (C), N là điểm di động trên d. Tìm giá trị nhỏ nhất của độ dài đoạn MN.