Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Đông Hưng - Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chọn nguồn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Đông Hưng – Thái Bình : + Lúc ban đầu ba kho có tất cả 710 tấn thóc. Sau khi bán đi 1 5 số thóc ở kho I, 1 6 số thóc ở kho II và 1 11 số thóc ở kho III thì số thóc còn lại ở ba kho bằng nhau. Hỏi lúc đầu mỗi kho có bao nhiêu tấn thóc? + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME MA. a) Chứng minh rằng: AC EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ B kẻ BP AM từ C kẻ CQ AM (PQ AE). Chứng minh AP + AQ = 2AM. Cho tam giác ABC có BAC 15 ABC 45 trên tia đối của tia CB lấy điểm D sao cho CD 2CB. Tính số đo ADC. + Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng 2 2 2 ab bc ca a b c 2(ab bc ca).

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Ân Thi - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ân Thi, tỉnh Hưng Yên.
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu Olympic cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương : + Tìm các số nguyên x và y biết: x + xy + y = 2. + Cho các số nguyên dương a b c d thoả mãn a2 + b2 + c2 + d2 chia hết cho 2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC nhọn có AB < AC < BC, O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, OI vuông góc BC tại I. 1) Chứng minh CHI cân. 2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI . Chứng minh M là trung điểm của AK. 3) Chứng minh B, O, M thẳng hàng.
Đề học sinh năng khiếu Toán 7 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra học sinh năng khiếu môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 7 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Bạn An nghĩ ra một số có ba chữ số, biết số đó chia hết cho 18 và các chữ số của số đó tỉ lệ với ba số 1; 2; 3. + Cho tam giác ABC vuông tại A (AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. a. Chứng minh ABC = CKA b. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Qua điểm D vẽ đường thẳng vuông góc với BC cắt AC tại E. Gọi F là hình chiếu của điểm E trên AH. Chứng minh AF = HB. c. Gọi M là trung điểm của đoạn thẳng BE. Tính số đo CHM. d. Chứng minh: AB2 AC2 AH2. + Tìm các số a, b, c nguyên dương thỏa mãn.
Đề HSG huyện Toán 7 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thứ hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Tính diện tích của mỗi hình chữ nhật đó. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. 1. Chứng minh rằng: AC = EB và AC // BE 2. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: Al = EK. Chứng minh: I, M, K thẳng hàng. 3. Từ E kẻ EH vuông góc BC (H thuộc BC). Biết góc HBE bằng 50°; góc MEB bằng 25°, tính các góc HEM và BME? 4. Từ điểm O tùy ý trong tam giác ABC, kẻ OQ, ON, OP lần lượt vuông góc với các cạnh BC, CA, AB. Hãy tính tỉ số: (AN2 + BP2 + CQ2)/(AP2 + BQ2 + CN2). + Tìm các số nguyên dương a b c thỏa mãn.