Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021 sở GDĐT TP HCM

Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM gồm có 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM : + Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó. Để xác định CAN, ta tìm số dư r trong phép chia X cho 10 và tra vào bảng 1. Để xác định CHI, ta tìm số dư s trong phép chia X cho 12 và tra vào bảng 2. Ví dụ : năm 2020 có CAN là Canh, có CHI là Tí. a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm 2005. b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thể kỉ 18. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu. + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc và lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y = ax + b. Hãy tìm a, b biết rằng nhà bạn Nam trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 đã gọi 40 phút với số tiền là 28 nghìn đồng. [ads] + Theo quy định của cửa hàng xe máy, để hoàn thành chi tiêu trong một tháng, mỗi nhân viên phải bán được trung binh một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chi tiêu trong một tháng thì nhận được lưong cơ bản là 8000000 đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được thương thêm $8%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng 5 (có 31 ngày), anh Thành nhận được số tiền là 9800000 đồng (bao gồm cả lương cơ bản và tiền thưởng thêm cúa tháng 6 ). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng 5, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được 2 500 000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo Toán tuyển sinh lớp 10 năm 2020 - 2021 sở GDĐT An Giang
Nhằm giúp các em học sinh khối lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10, sở Giáo dục và Đào tạo tỉnh An Giang công bố đề tham khảo Toán tuyển sinh lớp 10 năm học 2020 – 2021. Đề tham khảo Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT An Giang gồm 05 bài toán tự luận, học sinh có 120 phút để làm bài thi. Trích dẫn đề tham khảo Toán tuyển sinh lớp 10 năm 2020 – 2021 sở GD&ĐT An Giang : + Cho hàm số y = -x^2 có đồ thị là parabol (P). a. Vẽ đồ thị (P) trên hệ trục tọa độ. b. Viết phương trình đường thẳng (d) tiếp xúc parabol (P). Biết (d) cắt trục hoành và trục tung tại hai điểm A và B sao cho tam giác OAB vuông cân với O là gốc toạ độ. [ads] + Cho tam giác ABC có ba góc đều nhọn, vẽ đường tròn tâm (O) đường kính BC cắt hai cạnh AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD. a. Chứng minh ADHE là tứ giác nội tiếp. b. Gọi F là giao điểm của AH với BC. Chứng minh rằng DH là tia phân giác của EDF. + Gấp tờ giấy A4 có kích thước 210mm x 297mm theo đường chéo ta được một hình như hình vẽ bên. Tính diện tích hình sau khi đã xếp (phần tô đậm).
Đề minh họa Toán tuyển sinh lớp 10 THPT năm 2020 - 2021 sở GDĐT Yên Bái
Với những đổi mới trong cấu trúc đề tuyển sinh vào lớp 10 môn Toán hệ THPT năm học 2020 – 2021, sở Giáo dục và Đào tạo tỉnh Yên Bái đã công bố đề minh họa Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 có thể làm quen và nắm rõ những nội dung cần phải ôn tập. Đề minh họa Toán tuyển sinh lớp 10 THPT năm 2020 – 2021 sở GD&ĐT Yên Bái gồm có 04 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 THPT năm 2020 – 2021 sở GD&ĐT Yên Bái : + Cho đường tròn (O;R) nằm trong và tiếp xúc với đường tròn (O’;R’), R < R’. Hai đường tròn đó có bao nhiêu tiếp tuyến chung? A. Có một tiếp tuyến chung. B. Có ba tiếp tuyến chung. C. Có bốn tiếp tuyến chung. D. Có hai tiếp tuyến chung. [ads] + Cho tứ giác ABCD có A = B; C = D. Khẳng định nào sau đây đúng? A. Tứ giác ABCD là hình thang cân. B. Tứ giác ABCD là hình vuông. C. Tứ giác ABCD là hình thoi. D. Tứ giác ABCD là hình chữ nhật. + Cho các đường thẳng (d1): y = 2x – 2; (d2): y = -4/3x – 2 và đường thẳng (d3) có hệ số góc bằng 1/3 và đi qua điểm M(3;4). Ba đường thẳng trên đôi một cắt nhau tại A, B, C. Biết rằng, mỗi đơn vị trên trục tọa độ có độ dài 1cm. Bán kính r của đường tròn nội tiếp tam giác ABC bằng (làm tròn đến chữ số thập phân thứ hai).
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bến Tre
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bến Tre. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bến Tre, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bến Tre : + Sau Kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 sở GD&ĐT Bến Tre, học sinh hai lớp 9A và 9B tặng lại thư viện trường 738 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh của mỗi lớp. [ads] + Một bồn chứa xăng đặt trên xe gồm hai nửa hình cầu có đường kính là 2,2m và một hình trụ có chiều dài 3,5m. Tính thể tích của bồn chứa xăng (kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy). + Hai đường thẳng y = x − 1 và y = -2x + 8 cắt nhau tại điểm B và lần lượt cắt trục Ox tại điểm A, C. Xác định tọa độ các điểm A, B, C và tính diện tích tam giác ABC.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Bạc Liêu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Bạc Liêu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Bạc Liêu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu, kỳ thi được diễn ra vào ngày 07/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Bạc Liêu : + Cho hàm số y = 3x^2 có đồ thị (P) và đường thẳng (d): y = 2x + 1. Tìm tọa độ gia0 điểm của (P) và (d) bằng phép tính. + Trên nửa đường tròn đường kính AB, lấy hai điểm I, Q sao cho I thuộc cung AQ. Gọi C là giao điểm hai tia AI và BQ, H là giao điểm hai dây AQ và BI. a) Chứng minh tứ giác CIHQ nội tiếp. b) Chứng minh: CI.AI = HI.BI. c) Biết AB = 2R. Tính giá trị biểu thức: M = AI.AC + BQ.BC theo R. [ads] + Cho phương trình: x^2 – 2mx – 4m – 5 = 0 (m là tham số). a) Giải phương trình khi m = −2. b) Chứng minh phương trình luôn có nghiệm với mọi giá trị của m. c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để: 1/2.x1^2 – (m – 1)x1 + x2 – 2m + 33/2 = 762019.