Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Đồng Nai

Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi chọn HSG Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi được dành cho học sinh khối 12 theo học chương trình chuẩn hệ THPT, đề gồm 06 bài toán tự luận, thời gian làm bài 180 phút, bên dưới là lời giải tham khảo của đề thi này. Trích dẫn đề thi chọn HSG Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho hàm số y = 2x^3 – 3(m + 3)x^2 + 18mx + 8, với m là tham số. a) Tìm m để hàm số đã cho đồng biến trên R. b) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị nằm vế hai phía của trục tung. c) Tìm m để giá trị nhô nhất của hàm số đã cho trên đoạn [-1;0] bằng 24. + Chứng minh rằng 3nCn chia hết cho 3 với mọi n nguyên dương. [ads] + Trong một tiết học môn Toán, giáo viên mời ba học sinh A, B, C thực hiện trò chơi chơi như sau: Mỗi bạn A, B, C chọn ngẫu nhiên một số nguyên khác 0 thuộc khoảng (-6;6) và lần lượt thế vào ba tham số của hàm số y = ax^4 + bx^2 + c; nếu đồ thị hàm số thu được có ba điểm cực trị đều nằm phía trên trục hoành thì được nhận thưởng. Tính xác suất để ba học sinh A, B, C được nhận thưởng.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho các số thực không âm abc thỏa mãn abc 1. Tìm giá trị lớn nhất của biểu thức P ab ac bc 3 5. + Có 20 người xếp thành một vòng tròn. Hỏi có bao nhiêu cách chọn ra 5 người sao cho không có hai người kề nhau được chọn. + Cho hình lăng trụ ABCD A B C D có đáy ABCD là hình thoi. Hình chiếu vuông góc của A’ lên (ABCD) là trọng tâm của tam giác ABD. Biết AB a 0 ABC 120 AA a. Tính thể tích khối lăng trụ ABCD A B C D theo a.
Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 - 2018 sở GD và ĐT Hòa Bình
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 – 2018 sở GD và ĐT Hòa Bình gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn học sinh giỏi Toán 12 : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a√2, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a. c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH). [ads] + Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình (x – 1)^2 + (y – 1)^2 = 10. Đường tròn (C2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung AB = 2√5. Viết phương trình đường thẳng AB.