Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường THPT Sơn Tây - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 – 2023 trường THPT Sơn Tây, thành phố Hà Nội. Trích dẫn đề thi thử Toán vào lớp 10 lần 1 năm 2022 – 2023 trường THPT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trạm y tế phường Trung Hưng phải tiêm xong 3500 mũi vaccine phòng Covid-19 trong một số ngày quy định. Thực tế, mỗi ngày trạm y tế đã tiêm được nhiều hơn 200 mũi vaccine so với số mũi vaccine phải tiêm trong một ngày theo kế hoạch. Vì thế trạm y tế đã tiêm xong 3500 mũi vaccine đó trước thời hạn dự định hai ngày. Hỏi thực tế, mỗi ngày trạm y tế phường Trung Hưng đã tiêm được bao nhiêu mũi vaccine? (Giả định rằng số mũi vaccine trạm y tế được trong mỗi ngày là bằng nhau). + Một chiếc lồng đèn trung thu hình trụ có chiều cao 35cm và bán kính đáy 10cm. Người ta dán giấy trang trí toàn bộ phía ngoài mặt xung quanh của lồng đèn này (trừ hai mặt đáy). Tính diện tích bề mặt được dán giấy trang trí của lồng đèn. (Bỏ qua bề dày vật liệu và lấy π ≈ 3,14). + Cho hai số thực dương a, b thỏa mãn a b 2022 2022 90. Tìm giá trị nhỏ nhất của biểu thức 2 2 P a ab b.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Tháp gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Để tạo sân chơi cho học sinh tham gia các hoạt động tìm hiểu về hình ảnh và con người Đồng Tháp, Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường đã tổ chức hội thi Đồng Tháp trong trái tim tôi với các nội dung về hoạt động khởi nghiệp, du lịch trải nghiệm những địa danh ,nét văn hóa đặc trưng làng nghề, các món ăn, cây trái … của tỉnh. Sau hai vòng thi Ban Tổ Chức đã chọn ra ba đội xuất sắc là Hoa Sen, Hoa Súng, Hoa Tràm vào thi chung kết. Theo qui định của Ban Tổ Chức Hội Thi, mỗi đội phải trả lời 12 câu hỏi, mỗi câu trả lời đúng được cộng 10 điểm, mỗi câu trả lời sai trừ 3 điểm, mỗi câu không trả lời thì không được điểm. Trải qua các câu hỏi thì, đội Hoa Sen được 61 điểm. Hỏi đội Hoa Sen đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? [ads] + Thực hiện đổi mới phương pháp dạy học ,đổi mới kiểm tra đánh giá theo hướng phát triển năng lục học sinh, trong một tiết dạy hình học, một giáo viên đã ứng dụng công nghệ thông tin, sử dụng phần mềm biểu diễn cho học sinh quan sát trực quan. Cụ thể: Hình thang cân ABCD (AB song song với CD), có AB = 30cm, CD = 54cm và đường cao AH = 9cm. Cho hình thang này quay quanh cạnh đáy CD. Em hãy giúp bạn tính: 1/ Thể tích của hình tạo thành. 2/ Diện tích mặt ngoài của hình tạo thành.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.
Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.