Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 11 năm 2019 - 2020 trường THPT Phan Huy Chú - Hà Nội

Ngày … tháng 06 năm 2020, trường THPT Phan Huy Chú, huyện Quốc Oai, thành phố Hà Nội tổ chức kỳ thi kết thúc học kỳ 2 môn Toán 11 năm học 2019 – 2020. Đề thi HK2 Toán 11 năm 2019 – 2020 trường THPT Phan Huy Chú – Hà Nội mã đề 132 và mã đề 149 được biên soạn theo dạng đề trắc nghiệm, đề thi gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 149, 238, 395, 406, 571, 132, 209, 357, 485, 570. Trích dẫn đề thi HK2 Toán 11 năm 2019 – 2020 trường THPT Phan Huy Chú – Hà Nội : + Tìm mệnh đề đúng: A. Hình lập phương có 6 mặt là hình vuông. B. Hình chóp đều có tất cả các cạnh bằng nhau. C. Hình hộp có đáy là hình chữ nhật. D. Hình lăng trụ đều có đáy là tam giác đều. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a, AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60 độ. Tính khoảng cách từ trung điểm cạnh SD đến mặt phẳng (SBC). [ads] + Trong không gian cho các đường thẳng a, b, c và mặt phẳng (P). Mệnh đề nào sau đây sai? A. Nếu a ⊥ b, c ⊥ b và a cắt c thì b vuông góc với mặt phẳng chứa a và c. B. Nếu a ⊥ (P) và b // (P) thì a ⊥ b. C. Nếu a ⊥ b và b ⊥ c thì a // c. D. Nếu a // b và b ⊥ c thì c ⊥ a.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Hoàng Hoa Thám TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Viết phương trình tiếp tuyến d với đồ thị (C): y = x/(2x + 3) biết tiếp tuyến song song với đường thẳng d’: y = 3x – 4. + Cho hình chóp S.ABCD với ABCD là hình vuông có cạnh bằng 2a, H là trung điểm của AB, SH vuông góc (ABCD) và SH = a√3. a) Chứng minh (SBC) vuông góc (SAB). b) Xác định và tính góc giữa (SAD) và (ABCD). c) Tính theo a khoảng cách từ điểm H đến mặt phẳng (SAD). + Tính đạo hàm các hàm số sau.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Khẳng định nào sau đây là đúng? A. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau. D. Mặt phẳng (P) và đường thẳng a cùng vuông góc với đường thẳng b thì song song với nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. a. Chứng minh rằng BC ⊥ (SAB) và (SCD) ⊥ (SAD). b. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c. Tính góc giữa hai mặt phẳng (SBD) và (ABCD). + Cho hàm số y = x2 − 3x có đồ thị (C). a. Tính đạo hàm của hàm số trên. b. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = 1.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm học 2019 2020 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK2 Toán lớp 11 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 111 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 05 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 043, 044, 110, 111. Trích dẫn đề thi HK2 Toán lớp 11 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Chọn khẳng định đúng: A. Mặt phẳng (Q) vuông góc với đường thẳng a mà a vuông góc với đường thẳng b thì b song song với (Q). B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song. C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song. D. Hai đường thẳng cùng nằm trong một mặt phẳng thì chúng song song. + Cho hai đường thẳng a và b cùng nằm trong một mặt phẳng. Khi đó vị trị của a và b không thể xảy ra trường hợp nào sau đây? A. a và b là hai đường thẳng chéo nhau. B. a và b là hai đường thẳng song song với nhau. C. a và b là hai đường thẳng cắt nhau. D. a và b là hai đường thẳng trùng nhau. [ads] + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A. AB = c, AC = b, cạnh bên AA’ = a. 1) Tính khoảng cách từ B đến mặt phẳng (B’AC). 2) Gọi α, β, γ lần lượt là góc giữa mặt phẳng (A’BC) với các mặt phẳng (ABC), (AA’C) và (AA’B). Chứng minh rằng: cos α + cos β + cos γ ≤ √3. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm học 2019 2020 trường THPT Gia Định TP HCM Bản PDF Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK2 Toán lớp 11 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán lớp 11 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 4a; SA vuông góc với (ABCD) và SA = 4a. a) Chứng minh: (SAB) vuông góc với (SBC). b) Tính góc giữa hai mặt phẳng (SCD) và (ABCD). c) Tính theo a khoảng cách từ A đến mặt phẳng (SBC). [ads] + Xét tính liên tục của hàm số. + Tính đạo hàm các hàm số sau.