Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2018 - 2019 trường THPT Nguyễn Thị Minh Khai - Hà Nội

Đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT Nguyễn Thị Minh Khai – Hà Nội mã đề 485 được biên soạn nhằm tổng kết lại các kiến thức Toán 11 mà học sinh đã được học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề có cấu trúc trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 35 câu, phần tự luận gồm 4 câu, tổng thời gian làm bài là 90 phút. Trích dẫn đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT Nguyễn Thị Minh Khai – Hà Nội : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với mọi đường thẳng nằm trong (β). B. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (α) và (β) thì (α) và (β) song song với nhau. D. Qua một điểm nằm ngoài mặt phẳng cho trước ta dựng được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó. [ads] + Một giá sách có hai tầng. Tầng 1 có 10 quyển sách Toán khác nhau và 5 quyển sách Anh khác nhau. Tầng 2 có 8 quyển sách toán khác nhau và 6 quyển sách Văn khác nhau. Bạn An chọn ngẫu nhiên mỗi tầng 3 quyển sách. Xác suất để ban An chọn được 6 quyển sách không cùng môn là: + Một đề thi HK1 Toán 11 có 35 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án lựa chọn, trong đó chỉ có một phương án đúng. Khi thi, một học sinh đã chọn ngẫu nhiên một phương án trả lời với mỗi câu của đề thi đó. Xác suất để học sinh đó trả lời đúng cả 35 câu là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT chuyên ĐHSP Hà Nội
Thứ Tư ngày 11 tháng 12 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kì thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội gồm có 04 mã đề: 132, 209, 357, 485; đề được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 5,0 điểm, phần tự luận gồm có 04 câu, chiếm 5,0 điểm, học sinh có 90 phút để hoàn thành bài thi HK1 Toán 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Hai mặt bên SAB, SCD là các tam giác đều. Gọi G là trọng tâm tam giác SAB, E là điểm di động trên đoạn thẳng BG (E khác B). Cho mp(α) qua E, song song với SA và BC. a) Chứng minh rằng đường thẳng AD song song với mp(α). Tìm giao điểm M, N, P, Q của mp(α) với các cạnh SB, SC, DC, BA. b) Gọi I là giao điểm của QM và PN. Chứng minh I nằm trên một đường thẳng cố định khi điểm E di động trên đoạn BG. c) Chứng minh tam giác IPQ là tam giác đều. Tính diện tích tam giác IPQ theo a. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. C. Qua hai điểm phân biệt có duy nhất một mặt phẳng. D. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. + Cho hình chóp S.ABCD, gọi M, N, P theo thứ tự là trung điểm các cạnh BC, CD và SA. Mặt phẳng (MNP) cắt hình chóp S.ABCD theo thiết diện là hình gì? A. Ngũ giác. B. Tứ giác. C. Lục giác. D. Tam giác.
Đề thi HKI Toán 11 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 30 câu trắc nghiệm và 07 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB, điểm P thuộc SC sao cho SP = 2PC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm Q của SD và mặt phẳng (MNP). c) Tìm thiết diện của mặt phẳng (MNP) và hình chóp S.ABCD. d) Gọi I, J, K lần lượt là giao điểm của AD và MQ, MP và AC, NQ và BD. Chứng minh I, J, K thẳng hàng. + Có hai hộp chứa 8 bút xanh và 10 bút đỏ. Chọn ra hai bút. Tính xác suất để: a) Hai bút khác màu. b) Hai bút cùng màu. + Từ tập A = {0, 1, 2, 3, 4, 5} lập được bao nhiêu số tự nhiên thỏa mãn: a) Số gồm 4 chữ số phân biệt. b) Số chẵn gồm 4 chữ số phân biệt.
Đề thi học kỳ 1 Toán 11 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Thang máy của công ty A được thiết kế để mở cửa như sau: trên bảng điểu khiển có 10 nút được đánh số từ 0 đến 9, để mở cửa cần nhấn liên tiếp ba nút khác nhau sao cho ba số trên ba nút đó theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10. Nhân viên B không biết quy tắc mở cửa nói trên, đã nhấn ngẫu nhiên liên tiếp 3 nút khác nhau trên bảng điều khiển. a. Xây dựng biến cố ngẫu nhiên “Ba số trên ba nút theo thứ tự đã nhấn tạo thành dãy số tăng và có tổng bằng 10”. b. Tính xác suất để nhân viên B mở cửa thang máy được. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của AD, BC, SA. a) Tìm giao tuyến của (SAN) và (PCD). b) Tìm giao điểm của SB với mặt phẳng (MNP). c) G là trọng tâm tam giác SAB. Chứng minh SC // (GAN). + Khi khai triển (x –1)^n ta được hệ số của x3 là –20. Tìm n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Văn Cừ - TP HCM
Đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 20 tháng 12 năm 2020, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Cho hình chóp SABCD có ABCD là hình thang (AB đáy lớn). Gọi E, F, M, N lần lượt là trung điểm các cạnh SA, SB, BC, AD. a) Tìm giao tuyến của 2 mặt phẳng (EBC) và (SAD). b) Chứng minh EF // (SMN). + Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của hai đường thẳng AC và BD; E, F lần lượt là trung điểm các cạnh SA và SB. Chứng minh (OEF) // (SCD). + Gieo 1 con súc sắc 2 lần. Tính xác suất mặt 6 chấm xuất hiện ít nhất 1 lần.