Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Trương Công Định - Hải Phòng

Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 trường THCS Trương Công Định, quận Lê Chân, thành phố Hải Phòng gồm 2 trang, đề gồm 5 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề khảo sát Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Trương Công Định – Hải Phòng : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 3)x – 2m + 2 (m là tham số và m thuộc R). a) Với m = 5, hãy tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d). b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt nằm cùng phía bên phải trục tung. + Theo Điều 6 Nghị định 171/2013/NĐ-CP về xử phạt vi phạm hành chính trong lĩnh vực giao thông đường bộ và đường sắt. Cụ thể: Đối với ôtô: – Phạt tiền từ 600.000 đồng đến 800.000 đồng nếu điều khiển xe chạy quá tốc độ quy định từ 05 km/h đến dưới 10 km/h. – Phạt tiền từ 2 triệu đồng đến 3 triệu đồng nếu điều khiển xe chạy quá tốc độ quay định từ 10 km/h đến 20 km/h. – Phạt tiền từ 4 triệu đồng đến 6 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 20 km/h đến 35 km/h. – Phạt tiền từ 7 triệu đồng đến 8 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 35 km/h; điều khiển xe đi ngược chiều trên đường cao tốc, trừ các xe ưu tiên đang đi làm nhiệm vụ khẩn cấp theo quy định. [ads] Áp dụng các quy định trên để giải bài toán sau: Một cơ quan tổ chức di du lịch bằng 2 xe ô tô qua đường cao tốc Hải Phòng – Hà Nội dài 120km. Hai xe cùng khởi hành một lúc tại đầu đường cao tốc phía Hải Phòng, xe thứ nhất chạy chậm hơn xe thứ hai 44 km/h do đó xe thứ nhất đến hết đường cao tốc chậm hơn xe thứ hai là 22 phút. Biết rằng khi đến cuối đường có trạm kiểm soát tốc độ, hỏi khi đó có xe nào trong hai xe bị xử phạt vi phạm tốc độ hay không? Mức xử phạt là bao nhiêu tiền? (Giả sử vận tốc hai xe không đổi trên đường cao tốc, vận tốc tối đa cho phép là 120 km/h). + Cho hình chữ nhật ABCD có BC = 3cm, AB = 4cm. Quay hình chữ nhật đó một vòng quanh AB được một hình trụ. Tính diện tích xung quanh của hình trụ đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) năm học 2017-2018 Đề thi tuyển sinh môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) năm học 2017-2018 Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Tin) bao gồm 5 bài toán tự luận. Bài toán đầu tiên trong đề đề cập đến đường tròn và các điểm nằm trên đường tròn. Cụ thể, ta có đường tròn (O; R) có đường kính AB, và điểm M thuộc đoạn AB. Khi vẽ đường thẳng (d) vuông góc với AB qua M, ta còn xác định được các tiếp tuyến CE, CF với đường tròn (O), với E, F là tiếp điểm. Tiếp theo, đề bài yêu cầu chứng minh rằng các điểm C, M, E, F, O đều nằm trên cùng một đường tròn. Bài toán tiếp theo đề cập đến ba điểm E, F, I thẳng hàng. Cần chứng minh rằng các điểm này thực sự thẳng hàng. Cuối cùng, đề bài yêu cầu xác định vị trí của điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF. Đây là một bài toán không chỉ yêu cầu kiến thức vững chắc mà còn đòi hỏi trí tưởng tượng và khả năng tinh tế trong suy luận. Để giải quyết bài toán này, thí sinh cần phải có sự logic, khéo léo và kiên nhẫn. Chắc chắn đây sẽ là một thử thách đáng giá đối với những ai yêu thích môn Toán.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán của sở Giáo dục và Đào tạo Bắc Giang bao gồm 5 bài toán tự luận, mỗi bài có lời giải chi tiết. Các bài toán được thiết kế để đánh giá năng lực và kiến thức của thí sinh trong môn Toán, từ đó chọn lọc những học sinh tiềm năng cho trường THPT. Đề thi này không chỉ đơn thuần là một bài kiểm tra, mà còn là cơ hội để thí sinh thể hiện khả năng tư duy logic, sáng tạo và khả năng giải quyết vấn đề. Lời giải chi tiết giúp thí sinh hiểu rõ cách suy nghĩ và giải quyết vấn đề của từng bài toán, từ đó rèn luyện kỹ năng phân tích và giải quyết vấn đề hiệu quả. Với nội dung chi tiết, cụ thể và dễ hiểu, đề thi tuyển sinh Toán của sở GD và ĐT Bắc Giang sẽ giúp thí sinh tự tin và chuẩn bị tốt cho kỳ thi sắp tới.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Hà Nội Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Hà Nội Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội có 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết. Trong đề thi này, có một số bài toán đáng chú ý như sau: Bài toán 1: Cho hai xe ô tô và xe máy khởi hành từ điểm A để đi đến điểm B trên quãng đường dài 120km. Vận tốc của xe ô tô lớn hơn xe máy 10km/h. Xe ô tô đến đích sớm hơn xe máy 36 phút. Hãy tính vận tốc của mỗi xe. Bài toán 2: Trên một đường tròn ngoại tiếp tam giác nhọn ABC, M và N lần lượt là điểm chính giữa của các cung nhỏ AB và BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC tại H và K. Hãy chứng minh các điều sau: a) Bốn điểm C, N, K, I cùng thuộc một đường tròn b) NB * NK = NM^2 c) Tứ giác BHIK là hình thoi d) Đường kính ND của đường tròn (O) cắt E, trung điểm của PQ, và K theo một đường thẳng. Với những bài toán thú vị và đầy tính logic như vậy, đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Hà Nội chắc chắn sẽ là thử thách đáng giá đối với các thí sinh yêu thích môn Toán.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Nai
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Đồng Nai được thiết kế với 5 bài toán tự luận, trong đó có một số bài toán như sau: 1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi (P) và (Q) lần lượt là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) và nó cắt AB, AH, AC lần lượt tại M, K, N. Cần chứng minh tam giác HPQ đồng dạng với tam giác ABC. 2. Chứng minh rằng đoạn PK song song với đoạn AB và tứ giác BMNC là một tứ giác nội tiếp. 3. Xác định rằng năm điểm A, M, P, Q, N đều trên một đường tròn duy nhất. 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết rằng AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Yêu cầu tính giá trị lớn nhất của diện tích tam giác IDE theo a. Đề thi này đòi hỏi sự hiểu biết sâu rộng về kiến thức toán học, cũng như khả năng suy luận và chứng minh logic. Hãy cố gắng giải quyết từng bài toán một một cách cẩn thận để đạt được kết quả tốt nhất.