Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Yên Bái

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Yên Bái : + Cho đường thẳng (d): y = (m2 – 5m + 8)x – m + 2 với m là tham số thực. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho OB = 4OA. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. Các đường thẳng BE, CF lần lượt cắt đường tròn (O) tại giao điểm thứ hai là P, Q (P khác B, Q khác C). Tiếp tuyến của đường tròn (O) tại B, C cắt đường thẳng EF lần lượt tại M, N. a) Chứng minh rằng AEHF là một tứ giác nội tiếp và AH = AP = AQ. b) Chứng minh rằng tam giác NEC cân tại N. c) Giả sử NP cắt đường tròn (O) tại K. Chứng minh rằng NE2 = NK.NP và ba điểm M, Q, K thẳng hàng. + Trên một khu rừng đủ rộng người ta trồng nhiều cây quế con, xem các gốc cây quế là các điểm (đường kính gốc cây không đáng kể). Người ta trồng cây sao cho các tam giác có đỉnh là các điểm tạo bởi gốc cây quế đều có diện tích không quá 500m2. Chứng minh rằng tồn tại một tam giác có diện tích không quá 2024m2 chứa tất cá các cây quế này.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Củ Chi - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Củ Chi, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Củ Chi – TP HCM : + Cho hình vuông ABCD có AB = a, P và Q lần lượt là thuộc các cạnh AB, AD sao cho PCQ = 45°. Chứng minh rằng chu vi APQ = 2a. + Cho ABC vuông tại A (AB < AC), đường cao AH, phân giác AD. Trên AC lấy E sao cho AE = AB, BE cắt AH tại I. a. Chứng minh b. Cho DB = 15cm, DC = 20cm. Tính chu vi và diện tích của tứ giác AEDI. + Cho ABC cân tại A (A nhọn), H là trực tâm. Gọi E là trung điểm của AC. Lấy D trên BC sao cho BC = 3.CD. Chứng minh BE vuông góc HD.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Ba ngày 15 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Tìm tất cả số nguyên tố p có dạng p = a2 + b2 + c2 với a, b, c là các số nguyên dương thỏa mãn (a4 + b4 + c4) chia hết cho p. + Cho hình vuông MNPQ. Gọi A là điểm bất kì trên cạnh PQ (điểm A không trùng với hai điểm P, Q). Đường thẳng MA cắt đường thẳng NP tại điểm B. Qua M vẽ đường thẳng vuông góc với MA, cắt đường thẳng PQ tại C. 1. Chứng minh rằng 1/MA2 + 1/MB2 không đổi. 2. Gọi D, E lần lượt là hình chiếu của Q trên MA, MC. F là trung điểm AC. I là giao điểm của MF và DE. Chứng minh rằng: 1/MI = 1/QA + 1/QC. 3. Chứng minh rằng: cosACM = sinACB.cosABC + sinABC.cosACB. + Bên trong hình vuông có cạnh bằng 1 lấy n điểm phân biệt. Chứng minh rằng tồn tại một tam giác có đỉnh là đỉnh của hình vuông hoặc n điểm đó sao cho diện tích S của nó thỏa mãn bất đẳng thức: S ≤ 1/2(n + 1).
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tương Dương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tương Dương – Nghệ An : + Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab − 11b2 chia hết cho 5 thì a4 − b4 chia hết cho 5. + Cho hình vuông ABCD điểm N trên cạnh AB. Gọi E là giao điểm của CN và DA. Kẻ tia Cx vuông góc với CE cắt AB tại F, M là trung điểm của đoạn thẳng EF. Chứng minh rằng: a) CE = CF b) ACE = BCM c) Khi điểm N di chuyển trên cạnh AB (N không trùng với A và B) thì M chuyển động trên một đường thẳng cố định. + Cho a, b là hai số dương thỏa mãn a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức: F = (a3 + b3)2 + (a2 + b2) + 3/2ab.
Đề chọn HSG Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 11 tháng 11 năm 2022. Trích dẫn Đề chọn HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. + Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố.