Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Số phức - Trần Đình Cư

giới thiệu đến thầy, cô và các em học sinh khối 12 tài liệu chuyên đề số phức do thầy Trần Đình Cư biên soạn, tài liệu gồm 305 trang cung cấp đầy đủ lý thuyết, dạng toán và bài tập tự luận – trắc nghiệm số phức, tất cả các bài tập trong chuyên đề số phức này đều có đáp án và lời giải chi tiết, ngoài ra chuyên đề còn cung cấp các thủ thuật giải nhanh số phức bằng máy tính cầm tay Casio, giúp học sinh tiết kiệm thời gian giải toán. Chuyên đề số phức bao gồm 10 chủ đề: Chủ đề 1. Các phép toán cơ bản: Gồm các phép toán cộng trừ, nhân chia, nâng lũy thừa, điều kiện bằng nhau của hai số phức. Chủ đề 2. Biểu diễn hình học các số phức. + Cách biểu diễn hình học của số phức z = a + bi (a, b thuộc R) trong mặt phẳng phức. + Biểu diễn hình học của z, -z, z‾: M(z) và M(-z) đối xứng với nhau qua gốc tọa độ, M(z) và M(z‾) đối xứng với nhau qua trục Ox. + Biểu diễn hình học của z + z’, z – z’, kz (k thuộc R). + Với M, A, B lần lượt biểu diễn số phức z, a, b thì: OM = |z|; AB = |b – a|. Chủ đề 3. Tìm tập hợp điểm. + Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện: |z – a| = |z – b|, |z – a| + |z – b| = k. + Giả sử M và M’ lần lượt biểu diễn các số phức z = x + iy và w = f(z) = u + iv, nếu biết một hệ thức giữa x, y ta tìm được một hệ thức giữa u, v và suy ra được tập hợp các điểm M’, nếu biết một hệ thức giữa u, v ta tìm được một hệ thức giữa x, y và suy ra được tập hợp các điểm M. Chủ đề 4. Chứng minh đẳng thức. [ads] Chủ đề 5. Số phức thỏa điều kiện. + Tìm số phức z = x + iy thật ra là tìm phần thực x và phần ảo y của nó. + Trong trường hợp tìm số phức có môđun lớn nhất, nhỏ nhất ta làm như sau: Bước 1: Tìm tập hợp điểm (H) các điểm biểu diễn của z thỏa mãn điều kiện. Bước 2: Tìm số phức z tương ứng với điểm biểu diễn M thuộc (H) sao cho khoảng cách OM có giá trị lớn nhất (hoặc nhỏ nhất). Chủ đề 6. Phương trình số phức. + Bài toán 1. Phương trình quy về phương trình bậc nhất số phức. + Bài toán 2. Căn bậc hai số phức, phương trình bậc hai và phương trình quy về phương trình bậc hai. + Bài toán 3. Phương trình bậc ba. + Bài toán 4. Phương trình bậc bốn số phức. Chủ đề 7. Hệ phương trình số phức. + Giải hệ phương trình số phức bằng định thức. + Ngoài phương pháp định thức trên ta có thể sử dụng phương pháp cộng đại số, phương pháp rút thế. + Ngoài ra ta còn có thể dựa vào tính chất tập hợp điểm số phức để giải và biện luận hệ phương trình. Chủ đề 8. Dạng lượng giác số phức. + Bài toán 1. Viết số phức dưới dạng lượng giác. + Bài toán 2: Áp dụng công thức Moivre để thực hiện các phép tính. + Bài toán 3. Tìm môđun và acgumen của số phức. + Bài toán 4. Áp dụng công thức Moavrơ để tính căn bậc n của số phức. Chủ đề 9. Ứng dụng số phức. + Bài toán 1. Sử dụng số phức vào giải hệ phương trình. + Bài toán 2: Ứng dụng số phức vào chứng minh các công thức, đẳng thức lượng giác. + Bài toán 3: Ứng dụng vào chứng minh bất đẳng thức. + Bài toán 4. Ứng dụng giải toán khai triển hay tính tổng nhị thức Niutơn. + Bài toán 5. Ứng dụng giải toán đa thức và phép chia đa thức. Chủ đề 10. Tuyển chọn 100 bài tập số phức vận dụng và vận dụng bậc cao.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số phức ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 229 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức (Giải tích 12 chương 4), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. Chuyên đề 1 . XÁC ĐỊNH SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Xác định các yếu tố cơ bản của số phức. + Dạng toán 2. Biểu diễn hình học cơ bản của số phức. + Dạng toán 3. Thực hiện các phép tính cộng, trừ, nhân, chia cơ bản của số phức. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Tìm số phức thỏa mãn điều kiện cho trước. + Dạng toán 2. Một số bài toán liên quan đến số phức có lũy thừa bậc cao, chứa tham số. Chuyên đề 2 . TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ – GIỎI – XUẤT SẮC (Mức độ 7 – 8 – 9 – 10 điểm). + Dạng toán 1. Tập hợp điểm biểu diễn số phức là đường tròn. + Dạng toán 2. Tập hợp điểm biểu diễn số phức là đường thẳng. + Dạng toán 3. Tập hợp điểm biểu diễn số phức là đường conic. + Dạng toán 4. Tập hợp điểm biểu diễn số phức là một miền. + Dạng toán 5. Một số dạng toán khác liên quan đến tập hợp điểm biểu diễn số phức. Chuyên đề 3 . PHƯƠNG TRÌNH BẬC HAI VÀ PHƯƠNG TRÌNH BẬC CAO SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). Chuyên đề 4 . BÀI TOÁN CỰC TRỊ SỐ PHỨC. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Quỹ tích điểm biểu diễn số phức là đường thẳng. + Dạng toán 2. Quỹ tích điểm biểu diễn số phức là đường tròn. + Dạng toán 3. Quỹ tích điểm biểu diễn số phức là Elip.
300 câu vận dụng cao số phức ôn thi THPT môn Toán
Tài liệu gồm 25 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 300 câu vận dụng cao (VDC) số phức có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 300 câu vận dụng cao số phức ôn thi THPT môn Toán: + Xét các số phức z thỏa mãn điều kiện |z − 1 + i| = 2. Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w = z + 2 − i là: A đường tròn tâm I(−3; 2), bán kính R = 2. B đường tròn tâm I(3; −2), bán kính R = 2. C đường tròn tâm I(1; −1), bán kính R = 2. D đường tròn tâm I(1; 0), bán kính R = 2. + Cho số phức z thỏa mãn z + i/z − i là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là: A Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0, 1). B Hình tròn tâm O, bán kính R = 1 (kể cả biên). C Đường tròn tâm O, bán kính R = 1. D Hình tròn tâm O, bán kính R = 1 (không kể biên). + Trong mặt phẳng tọa độ Oxy, cho hình bình hành OABC có tọa độ điểm A(3; 1), C(−1; 2) (như hình vẽ bên). Số phức nào sau đây có điểm biểu diễn là điểm B?
Tổng ôn tập TN THPT 2020 môn Toán Số phức
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Số phức: Vấn đề 1. Khái niệm số phức và các phép toán trên số phức. Vấn đề 2. Phương trình số phức. Vấn đề 3. Biểu diễn điểm số phức.
Số phức và các phép toán về số phức - Diệp Tuân
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức.