Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 lần 1 năm 2022 - 2023 trường THPT Quảng Xương 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh giỏi môn Toán 12 lần 1 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 lần 1 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Hai chiếc ly đựng chất lỏng giống nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao là 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thư hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1 dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (Độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01 dm). + Bạn Mai là sinh viên năm cuối chuẩn bị ra trường, nhờ có công việc làm thêm mà Mai có một khoản tiết kiệm nhỏ, Mai muốn gửi tiết kiệm để chuẩn bị mua một chiếc xe máy Honda Lead trị giá 45 triệu đồng để tiện cho công việc. Vì vậy, Mai đã quyết định gửi tiết kiệm theo hình thức lãi kép với lãi suất 0,8%/1 tháng và mỗi tháng Mai đều đặn gửi tiết kiệm một khoản tiền là 3 triệu đồng. Hỏi sau ít nhất bao nhiêu tháng, Mai đủ tiền để mua xe máy? + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại 9 30 3 10 a A AB a AC. Hình chiếu của S trên mặt phẳng (ABC) là điểm H thuộc đoạn thẳng BC. Biết rằng HC HB 2 và 2 2 a SH. Góc giữa mặt phẳng (SAB) và (SAC) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Ninh Bình
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút; kỳ thi diễn ra vào ngày 28 tháng 10 năm 2020. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Tìm tất cả các cặp số nguyên tố (p;q) sao cho p^2 + 3pq + q^2 là một số chính phương. + Cho đường tròn (O;R) tiếp xúc với đường thẳng d tại điểm T cho trước. Một điểm M di động trên (O), tiếp tuyến của (O) tại M cắt d tại P. Gọi (C) là đường tròn tâm J đi qua M và tiếp xúc với d tại P và I là điểm đối xứng với P qua J. 1. Chứng minh OI = IP và (C) tiếp xúc với một đường tròn cố định. 2. Tìm quỹ tích tâm J của đường tròn (C) khi M di động trên (O). + Trong mặt phẳng cho n điểm phân biệt và m đường thẳng phân biệt. Gọi k là số bộ (A;a) sao cho A thuộc a với A là một trong các điểm đã cho và a là một trong các đường thẳng đã cho. 1. Tìm giá trị lớn nhất của k với n = 6 và m = 5. 2. Với n = 66 và m = 16, chứng minh k =< 159.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Hưng Yên
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 03 bài toán, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 09 và 10 tháng 09 năm 2020.
Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Bình Định
Thứ Hai ngày 09 tháng 11 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi lập đội tuyển tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm học 2020 – 2021. Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm. + Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE. + Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GDĐT Quảng Trị
Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.