Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Lâm Thao Bắc Ninh

Nội dung Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Lâm Thao Bắc Ninh Bản PDF - Nội dung bài viết Đề khảo sát môn Toán lớp 9 tháng 2 năm 2023 trường THCS Lâm Thao – Bắc Ninh Đề khảo sát môn Toán lớp 9 tháng 2 năm 2023 trường THCS Lâm Thao – Bắc Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm học 2022 - 2023 trường THCS Lâm Thao, huyện Lương Tài, tỉnh Bắc Ninh. Đề thi bao gồm 40 câu trắc nghiệm (mỗi câu đúng 1 điểm) và 04 câu tự luận (mỗi câu đúng 1.5 điểm), thời gian làm bài là 120 phút. Đề thi được chia thành 4 mã đề, đánh số từ 101 đến 104. Kỳ thi sẽ diễn ra vào ngày 01 tháng 03 năm 2023. Trích dẫn Đề khảo sát Toán lớp 9 tháng 2 năm 2023 trường THCS Lâm Thao – Bắc Ninh: + Một ca nô kéo một người mang dù lên không bằng một sợi dây dài 10m, tạo với mặt nước biển một góc 60°. Khi ca nô giảm tốc độ thì độ cao của người đó giảm xuống 2m. Hỏi khi ca nô giảm tốc độ thì người đó cách mặt nước biển bao nhiêu mét (làm tròn một chữ số thập phân)? + Đường tròn tâm A có bán kính 3cm là tập hợp các điểm: A. có khoảng cách đến điểm A nhỏ hơn hoặc bằng 3cm. B. cách đều điểm A. C. có khoảng cách đến điểm A lớn hơn 3cm. D. có khoảng cách đến điểm A bằng 3cm. + Một người mua hai loại hàng và phải trả tổng cộng 4,35 triệu đồng, kể cả thuế giá trị gia tăng (VAT) với mức 10% đối với loại hàng thứ nhất và 8% đối với loại hàng thứ hai. Nếu thuế VAT là 9% đối với cả hai loại hàng thì người đó phải trả tổng cộng 4,36 triệu đồng. Nếu chưa kể thuế VAT thì người đó phải trả bao nhiêu tiền cho mỗi loại hàng?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).