Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán cơ bản năm 2020 2021 trường chuyên Huỳnh Mẫn Đạt Kiên Giang

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán cơ bản năm 2020 2021 trường chuyên Huỳnh Mẫn Đạt Kiên Giang Bản PDF Thứ Ba ngày 05 tháng 01 năm 2021, trường THPT chuyên Huỳnh Mẫn Đạt, thành phố Rạch Giá, tỉnh Kiên Giang tổ chức kỳ thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi HK1 Toán lớp 11 cơ bản năm 2020 – 2021 trường chuyên Huỳnh Mẫn Đạt – Kiên Giang dành cho học sinh khối 11 theo học chương trình Toán lớp 11 cơ bản, đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 334, 269, 029, 099, 200, 576. Trích dẫn đề thi HK1 Toán lớp 11 cơ bản năm 2020 – 2021 trường chuyên Huỳnh Mẫn Đạt – Kiên Giang : + Trong các quy tắc sau, quy tắc nào không là phép biến hình? A. Quy tắc đặt tương ứng mỗi điểm M với điểm M’ sao cho M’ là hình chiếu vuông góc của M lên đường thẳng d cho trước. B. Quy tắc đặt tương ứng mỗi điểm M với điểm M’ sao cho MM’ = 1. C. Quy tắc đặt tương ứng mỗi điểm M với điểm M’ sao cho MM’ = a, a là vectơ cho trước. D. Quy tắc đặt tương ứng mỗi điểm M với chính nó. + Một người muốn đặt mật khẩu cho máy tính của mình. Biết rằng mật khẩu của anh ta có 6 kí tự, mỗi ký tự là một chữ số (từ 0 đến 9) hoặc một chữ cái (trong bảng 26 chữ cái tiếng Anh) và có ít nhất một kí tự số. Anh ta có bao nhiêu cách lập mật khẩu như vậy? + Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm E là trung điểm của cạnh SD. Giao điểm của đường thẳng AE và mặt phẳng (SBC) là: A. Điểm đối xứng với điểm A qua điểm E. B. Trung điểm của SC. C. Giao điểm của AE và SB. D. Điểm B.

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.