Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT QG 2020 lần 1 môn Toán trường THPT Nguyễn Huệ - Phú Yên

Ngày … tháng 05 năm 2020, trường THPT Nguyễn Huệ, thành phố Tuy Hòa, tỉnh Phú Yên tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020  lần thi thứ nhất. Đề thi thử tốt nghiệp THPT QG 2020 lần 1 môn Toán trường THPT Nguyễn Huệ – Phú Yên mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề bám sát cấu trúc đề minh họa tốt nghiệp THPT 2020 môn Toán. Trích dẫn đề thi thử tốt nghiệp THPT QG 2020 lần 1 môn Toán trường THPT Nguyễn Huệ – Phú Yên : + Một bàn cờ vua gồm 8 x 8 ô vuông, mỗi ô có cạnh bằng 1 đơn vị (xem hình bên). Một ô vừa là hình vuông hay hình chữ nhật, hai ô là hình chữ nhật …. Chọn ngẫu nhiên một hình chữ nhật trên bàn cờ. Xác suất để hình được chọn là hình vuông có cạnh lớn hơn 4 đơn vị bằng? [ads] + Cho hình nón có chiều cao 6a. Một mặt phẳng (P) qua đỉnh của hình nón và có khoảng cách đến tâm là 3a, thiết diện thu được là một tam giác vuông cân. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng? + Cho hình hộp ABCD.A’B’C’D’ có chiều cao bằng 8 và diện tích đáy bằng 11. Gọi M là trung điểm của AA’, N là điểm trên cạnh BB’ sao cho BN = 3B’N và P là điểm trên cạnh CC’ sao cho 6CP = 5C’P. Mặt phẳng (MNP) cắt cạnh DD’ tại Q. Thể tích của khối đa diện lồi có các đỉnh là các điểm A, B, C, D, M, N, P và Q bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp - Hòa Bình lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Công Nghiệp – Hòa Bình lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Cho khối tứ diện ABCD. Lấy một điểm M nằm giữa A và B, một điểm N nằm giữa C và D. Bằng hai mặt phẳng(MCD) và (NAB) ta chia khối tứ diện đã cho thành 4 khối tứ diện nào? + Ông Việt dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Tính số tiền tối thiểu x (triệu đồng, x thuộc N) ông Việt gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy giá trị 30 triệu đồng? + Một loại bèo Hoa dâu có khả năng sinh trưởng rất nhanh. Cứ sau một ngày (24 giờ) thì số lượng bèo thu được gấp đôi số lượng bèo của ngày hôm trước đó. Ban đầu người ta thả một cây bèo vào hồ nước (hồ chưa có cây bèo nào) rồi thống kê số lượng bèo thu được sau mỗi ngày. Hỏi trong các kết quả sau đây, kết quả nào không đúng với số lượng bèo thực tế?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Kim Liên - Hà Nội lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Kim Liên – Hà Nội lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên; h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1m và đạt được độ cao 6m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu? + Tính đến 31/12/2015 diện tích rừng trồng ở nước ta là 3 886 337 ha. Giả sử cứ sau một năm diện tích rừng trồng của nước ta tăng 6,1% diện tích hiện có. Hỏi sau ba năm diện tích rừng trồng ở nước ta là bao nhiêu?
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lương Thế Vinh - Hà Nội lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lương Thế Vinh – Hà Nội lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong - Nam Định lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lê Hồng Phong – Nam Định lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án kèm lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và thể tích bằng a^3. Tính chiều cao h của hình chóp đã cho. + Huyện A có 300 nghìn người. Với mức tăng dân số bình quân 1,2%/năm thì sau n năm dân số sẽ vượt lên 330 nghìn người. Hỏi n nhỏ nhất bằng bao nhiêu? + Trong không gian với hệ trục tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng có phương trình lần lượt là 2x – y + z + 2017 = 0 và x + y – z + 5 = 0. Tính số đo độ góc giữa đường thẳng d và trục Oz.