Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề vị trí tương đối của hai đường tròn

Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của hai đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Tính chất của đường nối tâm. – Đường nối tâm (Đường thẳng đi qua tâm 2 đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: – Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. – Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R r. 3. Tiếp tuyến chung của hai đường tròn. Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó. a) Hai đường tròn cắt nhau có hai tiếp tuyến chung ngoài. b) Hai đường tròn tiếp xúc ngoài có hai tiếp tuyến chung ngoài và một tiếp tuyến chung (hình vẽ b). c) Hai đường tròn tiếp xúc trong chỉ có một tiếp tuyến chung (hình c). d) Hai đường tròn ngoài nhau có hai tiếp tuyến chung ngoài và hai tiếp tuyến chung trong (hình vẽ d). e) Hai đường tròn chứa nhau không có tiếp tuyến chung. f) Hai đường tròn đồng tâm không có tiếp tuyến chung. B. Bài tập và các dạng toán. Dạng 1 : Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn tiếp xúc nhau ABH ANH. Dạng 2 : Các bài toán liên quan đến hai đường tròn cắt nhau. Cách giải : Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Các bài toán về hai đường tròn không cắt nhau. Cách giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không giao nhau. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.
Chuyên đề toán thực tế môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài toán thực tế môn Toán 9. MỤC LỤC : Bài số 1. Định lý Vi-ét và ứng dụng 1. Bài số 2. Kỹ năng làm toán thực tế “Hàm số và đồ thị” 2. Bài số 3. Giải toán bằng cách lập phương trình, hệ phương trình 15. Bài số 4. Các bài toán thực tế liên quan “Hình không gian” 24. Bài số 5. Các bài toán thực tế liên quan “Hình học phẳng” 38.