Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 2 Toán 9 năm 2023 - 2024 trường Thực hành Sài Gòn - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh. Trích dẫn Đề học kỳ 2 Toán 9 năm 2023 – 2024 trường Thực hành Sài Gòn – TP HCM : + Để tính lượng calo tiêu thụ trong một phút đi bộ, người ta sử dụng công thức: Lượng calo đốt cháy/phút = 0,035.w + 0,058.v.w/h. Trong đó: v (m/s) là vận tốc trung bình, w (kg) là cân nặng và h (m) là chiều cao của người đi bộ. a) Bạn Như nặng 54 kg, cao 1,64 m đi bộ với vận tốc trung bình 5,4 km/h thì lượng calo bạn Như tiêu thụ trong một phút là bao nhiêu, biết 1 m/s = 3,6 km/h (làm tròn kết quả đến chữ số thập phân thứ hai)? b) Bạn An có chiều cao 1,65 m, An đi bộ trong một giờ với vận tốc trung bình 1,8 m/s thì tiêu thụ 350 calo. Tính cân nặng của bạn An (làm tròn kết quả đến hàng đơn vị). + Một bồn chứa nước được đặt trên mặt đất với cấu tạo gồm phần đỉnh có dạng hình nón và phần thân có dạng hình trụ như hình vẽ. Biết chiều cao của hình nón là 1m, chiều cao của hình trụ là 2,4m, bán kính đường tròn đáy của hình trụ là 1,4m. a) Tính thể tích của bồn chứa nước trên (làm tròn kết quả đến chữ số thập phân thứ nhất). Biết công thức thể tích hình trụ: V = pir2h với r là bán kính đáy hình trụ và h là chiều cao hình trụ; công thức thể tích hình nón: V = 1/3pir’2h’ với r’ là bán kính đáy hình nón và h’ là chiều cao hình nón. b) Người ta muốn sơn toàn bộ mặt ngoài của bồn chứa nước trên (không sơn phần đáy bồn đặt trên mặt đất). Tính diện tích cần sơn theo mét vuông (làm tròn kết quả đến chữ số thập phân thứ nhất). + Một cuộc thi chạy Marathon gây quỹ từ thiện có 250 vận động viên tham dự, trong đó có 84% vận động viên đạt huy chương. Biết 80% vận động viên nữ tham dự đạt huy chương và 90% vận động viên nam tham dự đạt huy chương. Hãy tính số vận động viên nam và số vận động viên nữ đạt được huy chương.

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 9 năm 2021 - 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2021 – 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn đề học kì 2 Toán 9 năm 2021 – 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 108 km. Hai ô tô cùng khởi hành một lúc để đi từ A đến B. Biết ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 6 km nên ô tô thứ hai đến B muộn hơn ô tô thứ nhất là 12 phút. Tính vận tốc của mỗi xe. + Một bể nước hình trụ có bán kính hình tròn đáy là 0,5m, chiều cao là 1m. Một máy bơm bơm nước vào bể, mỗi phút bơm được 20 lít. Sau khi bơm được nửa giờ người ta tắt máy. Hỏi nước đã tràn bể hay chưa? (lấy pi = 3,14). + Cho parabol (P): y = x² và đường thẳng (d): y = mx – m + 1/2 a) Khi m = 3, tìm tọa độ giao điểm của (d) và (P) b) Tìm m để (d) cắt (P) tại hai điểm phân biệt đối xứng nhau qua trục tung.
Đề học kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT thị xã Ninh Hòa - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng học kì 2 môn Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo thị xã Ninh Hòa, tỉnh Khánh Hòa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Ninh Hòa – Khánh Hòa : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx − 4. a) Vẽ đồ thị (P). b) Xác định m để (d) tiếp xúc với (P). + Cho phương trình x2 − (m + 4)x + 3m + 3 = 0 (1) (với m là tham số). a) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. b) Gọi x1; x2 là hai nghiệm của phương trình (1). Tìm tất cả các giá trị dương của m để biểu thức 2 2 x x x x 8 1 1 2 2. + Từ điểm M ở ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB với đường tròn (O), A và B là các tiếp điểm. Gọi E là trung điểm của đoạn thẳng MB; C là giao điểm của AE và (O) (điểm C khác điểm A), H là giao điểm của AB và MO. a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn. b) Chứng minh EB2 = EC.EA. c) Chứng minh HCEB là một tứ giác nội tiếp. d) Gọi D là giao điểm của MC và (O) (điểm D khác điểm C). Chứng minh ABD là tam giác cân.
Đề kiểm tra cuối kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Nguyễn Thị Lựu - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Thị Lựu, thành phố Cao Lãnh, tỉnh Đồng Tháp, đề thi có đáp án, hướng dẫn giải và thang chấm điểm.
Đề kiểm tra học kỳ 2 Toán 9 năm 2020 - 2021 sở GDĐT tỉnh Đồng Nai
Đề kiểm tra học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày … tháng 05 năm 2021. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai : + Cho hàm số y = x2/2 có đồ thị là (P). 1) Xét tính đồng biến, nghịch biến của hàm số đã cho và vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy. 2) Hãy cho biết điểm nào trong hai điểm M(-10;50) và N(10;-50) thuộc đồ thị (P)? + Hội trường của nhà trường có 350 ghế ngồi được sắp xếp thành một số dãy ghế mà số ghế của mỗi dãy đều bằng nhau, mỗi ghế chỉ một người ngồi; trong lễ khen thưởng học sinh giỏi có 300 học sinh và đại biểu tham dự nên hội trường sắp xếp giảm 5 dãy ghế và mỗi dãy ghế còn lại đều sắp xếp tăng thêm 1 ghế. Hỏi ban đầu hội trường có bao nhiêu dãy ghế và mỗi dãy ghế có bao nhiêu ghế? + Cho hình vuông ABCD có cạnh bằng a, với 0 < a thuộc R. Tính theo a diện tích toàn phần của hình trụ tạo thành khi quay hình vuông ABCD quanh đường thẳng AB.