Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối 11 đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương, kì thi nhằm giúp nhà trường nắm rõ chất lượng dạy và học môn Toán lớp 11 của giáo viên và học sinh trong học kì vừa qua. Đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương mã đề 993, đề gồm 07 trang với 50 câu hỏi và bài toán trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 594, 993, 851, 464, 691, 412, 938, 205. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi N là giao điểm của đường thẳng SD với mặt phẳng AMB. Mệnh đề nào sau đây đúng? A. Ba đường thẳng AB, CD, MN đôi một song song. B. Ba đường thẳng AB, CD, MN đôi một cắt nhau. C. Ba đường thẳng AB, CD, MN cùng thuộc một mặt phẳng. D. Ba đường thẳng AB, CD, MN đồng quy. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. B. Tam giác MNE. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNC) là: A. Một hình bình hành. B. Một hình thang có hai cạnh bên không song song. C. Một tam giác. D. Một ngũ giác. + Trong không gian, cho hình chóp có đáy là đa giác n cạnh (n lớn hơn hoặc bằng 3). Khẳng định nào sau đây là sai? A. Số cạnh của hình chóp là 2n. B. Số đỉnh của hình chóp là 2n + 1. C. Số mặt của hình chóp bằng số đỉnh của nó. D. Số mặt của hình chóp là n + 1. + Một bộ có 25 thành viên. Số cách chọn một ban quản lí gồm 1 chủ tịch, 1 phó chủ tịch và 1 thư ký, trong đó không có ai kiêm nhiệm, là: A. 6900. B. 13800. C. Kết quả khác. D. 5600.

Nguồn: sytu.vn

Đọc Sách

Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Lê Quý Đôn - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Lê Quý Đôn, quận Đống Đa, thành phố Hà Nội; đề thi được biên soạn theo hình thức 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Lê Quý Đôn – Hà Nội : + Xét các mệnh đề sau trong không gian. Hỏi mệnh đề nào sau đây sai? A. Hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung. B. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau. C. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau. D. Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau. + Để cài đặt mật khẩu wifi của phòng học gồm 8 ký tự với hai ký tự đầu tiên cố định là AB, 6 ký tự tiếp theo, cô Lan dùng một số tự nhiên lẻ gồm 6 chữ số khác nhau và nhỏ hơn 600.000. Bình được cô Lan cho biết thông tin ấy nhưng không cho biết mật khẩu chính xác là số nào nên quyết định thử bấm ngẫu nhiên một số tự nhiên lẻ gồm 6 chữ số khác nhau và nhỏ hơn 600.000. Tính xác suất để Bình nhập một lần duy nhất mà đúng mật khẩu để bắt được wifi của phòng học trên. + Câu lạc bộ cầu lông của một trường THPT có 14 thành viên gồm 3 học sinh khối 10, 5 học sinh khối 11 và 6 học sinh khối 12. Nhà trường cần chọn ngẫu nhiên 6 học sinh trong câu lạc bộ đi đánh trận giao hữu với đội bạn. Tính xác suất để 6 học sinh được chọn: a) Chia đều cho cả 3 khối 10, 11, 12. b) Có đủ cả ba khối 10, 11, 12.
Đề học kì 1 Toán 11 năm 2022 - 2023 trường THPT Ngô Gia Tự - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Ngô Gia Tự, tỉnh Phú Yên; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút, không tính thời gian phát đề; đề thi có đáp án và lời giải chi tiết mã đề 132 – 209 – 357 – 485. Trích dẫn Đề học kì 1 Toán 11 năm 2022 – 2023 trường THPT Ngô Gia Tự – Phú Yên : + Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên cạnh SC và J không trùng với trung điểm SC. Giao tuyến của 2 mặt phẳng (ABCD) và (AIJ) là: (Tham khảo hình vẽ). A. AK (K là giao điểm của IJ và BC). B. AH (H là giao điểm của IJ và AB). C. AG (G là giao điểm của IJ và AD). D. AF (F là giao điểm của IJ và CD). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với AB. B. d qua S và song song với BD. C. d qua S và song song với DC. D. d qua S và song song với BC. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Thiết diện của hình chóp S.ABCD cắt bởi mp(IBC) là: (Tham khảo hình vẽ). A. Tam giác IBC. B. Hình thang IJBC (J là trung điểm SD). C. Hình thang IGBC (G là trung điểm SB). D. Tứ giác IBCD.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Nguyễn Tất Thành - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Tất Thành, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 60 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Nguyễn Tất Thành – TP HCM : + Bạn An được yêu cầu viết ngẫu nhiên lên bảng một số tự nhiên có hai chữ số. 1. Tính xác suất để bạn An viết được số có hai chữ số giống nhau. 2. Tính xác suất để bạn An viết được số chia hết cho 3 và chữ số hàng chục lớn hơn chữ số hàng đơn vị. + Cho hình chóp S.ABCD có đáy là hình bình hành tâm I. 1. Tìm giao tuyến của các mặt phẳng (SAB) và (SCD); (SAC) và (SBD). 2. Gọi M, N lần lượt là trọng tâm các tam giác ABC và ABI, K là điểm trên cạnh SB sao cho SB = 3SK. Chứng minh (MNK) // (SAC). + Cho hình chóp S.ABC. P, Q lần lượt là trung điểm SA và BC, R là điểm thuộc cạnh AB sao cho AB = 3BR. Tìm giao điểm K của đường thẳng SC và (PQR), chứng minh SK = 2KC.
Đề cuối học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Thị xã Quảng Trị, tỉnh Quảng Trị; đề thi được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án và lời giải chi tiết mã đề 111 112 113 114. Trích dẫn Đề cuối học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Cho hình chóp S ABCD có đáy là hình thang ABCD AD BC. Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng SBM và SAC là: A. SI I là giao điểm AC và BM. B. SJ J là giao điểm AM và BD. C. SO O là giao điểm AC và BD. D. SP P là giao điểm AB và CD. + Cho hình chóp S ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm tam giác ABC và M là trung điểm SC. a) Tìm giao tuyến của hai mặt phẳng SAC và SBD. b) Tìm giao điểm của đường thẳng SD với mặt phẳng AGM. + Trong các khẳng định sau, khẳng định nào đúng? A. Qua 2 điểm phân biệt có duy nhất một mặt phẳng. B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng. C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng. D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.