Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD ĐT Hoàng Mai Nghệ An

Nội dung Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD ĐT Hoàng Mai Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD ĐT Hoàng Mai Nghệ An Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD ĐT Hoàng Mai Nghệ An Sytu xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT đợt 1 năm 2023 do phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An tổ chức. Bộ đề thi bao gồm các câu hỏi, đáp án và hướng dẫn chấm điểm. Trích đoạn Đề thi thử Toán vào 10 đợt 1 năm 2023 phòng GD&ĐT Hoàng Mai – Nghệ An: Cho phương trình: x2 – 7x + 9 = 0 có hai nghiệm dương phân biệt. Không giải phương trình, hãy tính: C. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hưởng ứng phong trào lập thành tích chào mừng 10 năm thành lập thị xã Hoàng Mai, Thị Đoàn đã phối hợp với một trường THCS A trên địa bàn, chọn 56 đoàn viên của lớp 9 tham gia lao động trồng cây xanh. Biết mỗi đoàn viên nam trồng 3 cây, mỗi đoàn viên nữ trồng 2 cây với tổng số cây trồng được là 134 cây. Tính số đoàn viên nam, số đoàn viên nữ lớp 9 của trường THCS A đã tham gia lao động trồng cây. Cho tam giác ABC nhọn nội tiếp (O), hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Vẽ DK vuông góc với AB (K thuộc AB), gọi F là trung điểm của ED, tia BF cắt (O) tại I (khác B). a) Chứng minh tứ giác BEDC nội tiếp b) Chứng minh rằng BK•BA = BF•BI c) Chứng minh rằng, hai đường thẳng AH và ID cắt nhau tại một điểm nằm trên (O). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 – 2025 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người lái xe máy để giao một gói hàng từ địa điểm A đến địa điểm B với vận tốc không đổi trên quảng đường dài 30km. Khi giao hàng xong, người đó đi từ B trở về A trên cùng quãng đường với vận tốc lớn hơn vận tốc lúc đi là 10km/h. Biết thời gian đi nhiều hơn thời gian về là 15 phút, tính vận tốc của người đó lúc đi từ A đến B. + Một chiếc nón lá có dạng hình nón với đường kính đáy bằng 44cm, độ dài đường sinh là 30cm. Người ta lát mặt ngoài xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón lá như vậy. + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Gọi M là trung điểm của BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M đến các đường thẳng AB, AC. 1) Chứng minh bốn điểm A, E, M, F cùng thuộc một đường tròn. 2) Đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh KBC = MEF và BC.ME = EF.BK. 3) Gọi J là trung điểm của EF. Chứng minh AO song song với JM.
30 đề minh họa Toán (chung) vào lớp 10 năm 2024 - 2025 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 tài liệu tuyển tập 30 đề minh họa tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm.
Đề khảo sát Toán (chuyên) vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (dành cho thí sinh thi vào chuyên Toán và chuyên Tin học) tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho n là số nguyên dương và d là ước dương của 2 2 n chứng minh 2 n d không phải là số chính phương. + Tam giác nhọn không cân ABC nội tiếp đường tròn O đường cao AH H BC. Gọi K L lần lượt là hình chiếu vuông góc của điểm H trên các cạnh AB AC. Đường thẳng KL cắt đường tròn O tại hai điểm P Q (P và B cùng phía đối với AC). a) Chứng minh tứ giác BKLC nội tiếp đường tròn. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác PHQ. c) AH cắt lại đường tròn O tại TT A. Gọi D là hình chiếu vuông góc của H lên KL AD cắt đường tròn O tại MM A. Chứng minh 0 HMT 90. + Chứng minh rằng từ 6 số vô tỉ tùy ý ta có thể chọn được 3 số abc sao cho cả 3 số a bb cc a đều là số vô tỉ. Bài toán còn đúng không nếu ban đầu là 4 số?
Bộ đề ôn tập tuyển sinh vào lớp 10 môn Toán - Lê Trung Tuyến
Tài liệu gồm 255 trang, được biên soạn bởi thầy giáo Lê Trung Tuyến, tuyển tập 50 đề ôn tập tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết.