Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 11 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam

Nội dung Đề thi học sinh giỏi lớp 11 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam Bản PDF Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 11, đề thi học sinh giỏi Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam : + Cho hình vuông cỡ 9×9 tâm O được tạo từ 9×9 hình vuông đơn vị. Hai hình vuông đơn vị được gọi là kề bên nếu chúng có một cạnh chung. Một con bọ ban đầu ở O. Mỗi lần di chuyển con bọ sẽ nhảy ngẫu nhiên từ tấm hình vuông đơn vị nó đứng sang tấm hình vuông đơn vị kề bên. Tính xác suất để con bọ sau 4 bước nhảy sẽ quay lại điểm O. [ads] + Một người A đứng tại gốc O của trục số x’Ox. Do say rượu nên người A bước ngẫu nhiên sang trái hoặc sang phải trên trục tọa độ với độ dài mỗi bước là 1 đơn vị. Tính xác suất để sau n (n ≥ 2) bước thì người A quay lại gốc tọa độ O. + Cho hình lập phương tâm O được ghép từ 9x9x9 hình lập phương đơn vị. Hai hình lập phương đơn vị được gọi là kề bên nếu chúng có chung một mặt. Con bọ ban đầu ở tâm O. Mỗi bước nhảy con bọ sẽ nhảy từ tâm khối lập phương đơn vị nó đứng sang tầm khối lập phương đơn vị kề bên. Tính xác suất để con bọ sau 4 bước nhảy sẽ quay lại điểm O.

Nguồn: sytu.vn

Đọc Sách

Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng
Nội dung Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5. File WORD (dành cho quý thầy, cô):
Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh Bản PDF Đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác. File WORD (dành cho quý thầy, cô):
Đề chọn HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường THPT chuyên Vĩnh Phúc
Nội dung Đề chọn HSG lớp 11 môn Toán cấp trường năm 2019 2020 trường THPT chuyên Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề chọn HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc; đề gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài thi 180 phút. Trích dẫn đề chọn HSG Toán lớp 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc : + Cho hai số nguyên a và b. Chứng minh rằng nếu a^5 ≡ b^5 (mod 97) thì a ≡ b (mod 97). + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác. L, M, N lần lượt là các giao điểm thứ hai của AI, BI, CI với (O). Một đường tròn (w) thay đổi luôn đi qua I, L và cắt cạnh BC tại E, F (E nằm giữa B và F). Các đường thẳng LE, LF cắt (O) tại điểm P, Q. [ads] a) Chứng minh rằng tứ giác EFQP nội tiếp và đường thẳng PQ luôn đi qua một điểm cố định khi đường tròn (w) thay đổi. b) Đường thẳng PQ cắt AB, AC lần lượt tại H, K. Chứng minh rằng NH và MK cắt nhau tại một điểm nằm trên đường tròn (w). + Cho m ≤ n là hai số nguyên dương và một bảng có kích thước m x n gồm mn ô vuông đơn vị. Mỗi ô vuông có không quá một con kiến. Biết rằng với mỗi số nguyên dương k thuộc tập hợp {1, 2, 3, …, 78}, tồn tại một hàng hoặc một cột trong bảng có đúng k con kiến. a) Tìm giá trị nhỏ nhất có thể của m + n. b) Tìm giá trị nhỏ nhất có thể của số con kiến trên bảng đã cho.