Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự học và ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên: 1. Cho tập con A của tập số tự nhiên, biết A có phần tử nhỏ nhất là 1 và lớn nhất là 100. Mỗi phần tử x thuộc A, x*1 luôn biểu diễn được dưới dạng x = a + b trong đó a, b thuộc A và a có thể bằng b. Hãy tìm tập A có số phần tử nhỏ nhất và giải thích cách tìm? 2. Trong tam giác ABC với AB AC và đường tròn nội tiếp O có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi I là trung điểm của BC, P là giao điểm của EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại K. a) Chứng minh PB = PC = PE = PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại Q. Chứng minh tứ giác BIQF nội tiếp. 3. Được cho ba điểm A, B, C phân biệt trên cùng một đường thẳng. Kẻ đường thẳng d vuông góc với AC qua B, D di chuyển trên đường thẳng d sao cho D khác B. Đường tròn ngoại tiếp tam giác ACD cắt d tại E. Gọi P, Q là hình chiếu vuông góc của B lần lượt trên AD và AE. Gọi R là giao điểm của BQ và CD, S là giao điểm của BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di chuyển trên đường thẳng d.

Nguồn: sytu.vn

Đọc Sách

Bộ đề ôn tập tuyển sinh vào lớp 10 môn Toán - Lê Trung Tuyến
Tài liệu gồm 255 trang, được biên soạn bởi thầy giáo Lê Trung Tuyến, tuyển tập 50 đề ôn tập tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết.
Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 1 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 1 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 1 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một thửa ruộng hình chữ nhật có chu vi là 300m. Tính diện tích của thửa ruộng biết rằng nếu giảm chiều dài đi 3 lần, tăng chiều rộng 2 lần thì chu vi của thửa ruộng không thay đổi. + Một thùng đựng sơn hình trụ có đường kính đáy là 16cm và chiều cao là 24cm. Tính diện tích vật liệu để tạo nên một vỏ thùng đựng sơn đó (cho biết phần mép nối không đáng kể và lấy pi ~ 3,14). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2mx + 1 – m2 (m là tham số) và parabol (P): y = x2. a. Chứng minh với mọi giá trị m, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2. b. Tìm m để x1, x2 là số đo độ dài hai đường chéo của một hình thoi có chu vi 45.
Đề khảo sát Toán vào lớp 10 năm 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát môn Toán tuyển sinh vào lớp 10 năm 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào lớp 10 năm 2024 trường Nguyễn Tất Thành – Hà Nội : + Tuần trước mẹ Nam đi chợ mua 20 quả trứng gà và 15 quả trứng vịt hết 98 nghìn đồng. Tuần này mẹ Nam mua 14 quả trứng gà và 20 quả trứng vịt hết 99 nghìn đồng. Tính giá một quả trứng gà. Biết rằng giá mỗi quả trứng gà và mỗi quả trứng vịt không thay đổi. + Trên nửa đường tròn (O;R) đường kính AB lấy hai điểm C và D sao cho AC = R và BD = R2. Hai đường thẳng AC và BD cắt nhau tại điểm M. Tính số đo AMB. + Hai xe ô tô cùng xuất phát từ A chuyển động thẳng đều theo hai hướng tạo với nhau một góc 60 độ. Biết vận tốc của hai xe lần lượt là 50 km/h và 60 km/h. Hỏi sau khi xuất phát 1 giờ khoảng cách giữa hai xe là bao nhiêu kilômét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đề khảo sát Toán vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (m là tham số). a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm x1, x2 sao cho. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Kẻ tiếp tuyến chung DE của hai đường tròn với D thuộc (O) và E thuộc (O’) sao cho B gần tiếp tuyến đó hơn so với A. a) Chứng minh rằng DAB = BDE. b) Đường thẳng DB cắt AE tại P, đường thẳng EB cắt AD tại Q. Chứng minh tứ giác APBQ nội tiếp đường tròn. c) Chứng minh bán kính đường tròn ngoại tiếp tam giác ADE bằng bán kính đường tròn ngoại tiếp tam giác BDE.