Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An

Nội dung Đề thi thử Toán vào 10 lần 1 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 1 năm 2022-2023 phòng GD&ĐT Tân Kỳ - Nghệ An Đề thi thử Toán vào 10 lần 1 năm 2022-2023 phòng GD&ĐT Tân Kỳ - Nghệ An Chào đón quý thầy cô giáo và các em học sinh lớp 9! Bạn đang cầm trên tay đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022-2023 của phòng Giáo dục và Đào tạo Tân Kỳ, tỉnh Nghệ An. Hãy cùng Sytu khám phá nội dung của đề thi này nhé! Đề thi bao gồm các bài toán thú vị như: Phương trình bậc hai x2 - 7x + 5 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình chỉ cần tính giá trị của biểu thức T. Một xe khách di chuyển từ A đến B với vận tốc khác nhau, hãy tính độ dài quãng đường AB và thời gian dự định của xe khách. Tam giác ABC có góc nhọn nội tiếp đường tròn (O), và những bài toán liên quan đến các tứ giác nội tiếp và các góc trong tam giác. Những bài toán này không chỉ giúp bạn rèn luyện kỹ năng giải toán mà còn giúp bạn phát triển tư duy logic, khả năng suy luận và sự kiên nhẫn. Hy vọng rằng đề thi sẽ là cầu nối giúp các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hạ Long - Quảng Ninh
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh dành cho thí sinh thi vào các lớp 10 chuyên Toán; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút; kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh : + Cho x, y là hai số thực thỏa mãn x2 + 5y2 + 4xy + 3x + 4y = 27. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức M = x + 2y. + Từ một điểm A ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B, C là các tiếp điểm, AD < AE, DB < DC). Qua điểm O kẻ đường thẳng vuông góc với DE tại H, đường thẳng này cắt đường thẳng BC tại K. Chứng minh: 1. Tứ giác BCOH nộp tiếp. 2. KD là tiếp tuyến của đường tròn (O). 3. DBC = HBC. + Tìm tất cả các cặp số nguyên dương (a; b) sao cho ab(a + b)/(ab + 2) là số nguyên.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Cho Parabal có phương trình: y = 3×2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác AP Q nhỏ nhất.
Đề thi vào 10 môn Toán (chung) năm 2020 - 2021 trường chuyên Lê Quý Đôn - Lai Châu
Đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách dự tính đi từ thành phố Lai Châu đến huyện Nậm Nhùn trong một thời gian đã định. Sau khi đi được 1 giờ thì ô tô này dừng lại nghỉ 10 phút. Do đó để đến Nậm Nhùn đúng hạn xe phải tăng tốc thêm 6 km/h. Tính vận tốc ban đầu của ô tô biết rằng quãng đường từ thành phố Lai Châu đi huyện Nậm Nhùn dài 120 km. + Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm tới đường tròn đó (B,C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. 1. Chứng minh tứ giác ABOC là tứ giác nội tiếp. 2. Chứng minh AH.AO = AD.AE. 3. Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng: IP + KQ ≥ PQ. + Cho a, b là các số không âm thỏa mãn a2 + b2 ≤ 2, hãy tìm giá trị lớn nhất của biểu thức: M = a√3b(a + 2b) + b√3a(b + 2a).
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.