Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội SYTU xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 2 môn Toán chung trường THPT chuyên Đại học Sư phạm Hà Nội. Đề thi bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Câu 1: Một hội trường có 374 ghế, được xếp thành nhiều dãy, số ghế ở mỗi dãy bằng nhau và không vượt quá 30. Hãy tìm số dãy ghế của hội trường biết rằng: nếu kê mỗi dãy thêm 2 ghế và bổ sung thêm 1 dãy ghế (số ghế ở mỗi dãy vẫn bằng nhau) thì tổng số ghế là 432. Câu 2: Tìm tất cả các giá trị của m để đồ thị hàm số y = (m − 1)x + 2m + 3 cắt hai trục tọa độ Ox, Oy tương ứng tại hai điểm A, B phân biệt sao cho tam giác OAB có diện tích bằng 4. Câu 3: Cho đường tròn (O) có đường kính AB và M là một điểm nằm trên (O) (M khác A và B). Trong nửa mặt phẳng chứa M, có bờ là đường thẳng AB vẽ các tia Ax, By vuông góc với AB. Tiếp tuyến tại M của (O) cắt các tia Ax, By lần lượt tại C, D. Chứng minh rằng đường thẳng AB là tiếp tuyến của đường tròn đường kính CD. Vẽ đường tròn (I) qua M, tiếp xúc với Ax tại C. Tia OC cắt đường tròn (I) tại điểm thứ hai J. Chứng minh rằng J là trung điểm của OC. Gọi E là trung điểm của OA. Chứng minh rằng đường thẳng qua E và vuông góc với BC cắt OM tại một điểm thuộc đường tròn (I). Mọi thông tin chi tiết và lời giải đều được cung cấp trong đề thi. Chúc quý thầy cô và các em học sinh làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Định
Thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Định gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Định : + Trong kỳ thi chọn học sinh giỏi lớp 9 cấp trường, tổng số học sinh đạt giải của cả hai lớp 9A1 và 9A2 là 22 em, chiếm tỷ lệ 40% trên tổng số học sinh dự thi của hai lớp trên. Nếu tính riêng từng lớp thì lớp 9A1 có 50% học sinh dự thi đạt giải và lớp 9A2 có 28% học sinh dự thi đạt giải. Hỏi mỗi lớp có tất cả bao nhiêu học sinh dự thi. [ads] + Cho đường tròn tâm O, đường kính AB và d là một tiếp tuyến của đường tròn (O) tại điểm A. Trên đường thẳng d lấy điểm M (khác A) và trên đoạn OB lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn (O) tại hai điểm C và D sao cho C nằm giữa M và D. Gọi H là trung điểm của đoạn thẳng CD. a) Chứng minh tứ giác AOHM nộp tiếp được trong đường tròn. b) Kẻ đoạn DK song song với MO (K nằm trên đường thẳng AB). Chứng minh rằng MDK = BAH và MA^2 = MC.MD. c) Đường thẳng BC cắt đường thẳng OM tại điểm I. Chứng minh rằng đường thẳng AI song song với đường thẳng BD. + Cho x và y là các số thực dương thỏa mãn x + y = √10. Tìm giá trị của x và y để biểu thức A = (x^4 + 1)(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021 sở GDĐT Nghệ An
Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT Nghệ An : + Cho phương trình x^2 – 4x – 3 = 0 có hai nghiệm phân biệt x1, x2. Không giải phương trình, hãy tính giá trị của biểu thức T = x1^2/x2 + x2^2/x1. + Hưởng ứng phong trào toàn dân chung tay đẩy lùi đại dịch Covid-19, trong tháng hai năm 2020, hai lớp 9A và 9B của một trường THCS đã nghiên cứu và sản xuất được 250 chai nước rửa tay sát khuẩn. Vì muốn tặng quà cho khu cách li tập trung trên địa bàn, trong tháng ba, lớp 9A làm vượt mức 25%, lớp 9B làm vượt mức 20%, do đó tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Hỏi trong tháng hai, mỗi lớp đã sản xuất được bao nhiêu chai nước rửa tay sát khuẩn. [ads] + Cho tứ giác ABCD (AD > BC) nội tiếp đường tròn tâm O đường kính AB. Hai đường chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu của E trên AB. a) Chứng minh ADEH là tứ giác nội tiếp. b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh DI^2 = AI.BI. c) Khi tam giác DAB không cân, gọi M là trung điểm của AB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O).
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bến Tre (chung)
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) được sử dụng cho toàn bộ các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập, đề thi gồm 08 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bến Tre (chung) : + Với giá trị nào của tham số m thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 – m) cắt nhau tại một điểm nằm trên trục hoành? [ads] + Cho tam giác ABC vuông tại B có đường cao BH (H thuộc AC), biết AB = 6 cm, AC = 10 cm. Tính độ dài các đoạn thẳng BC, BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) được dành chung cho tất cả các thí sinh thi vào các lớp chuyên Toán, Văn và Tiếng Anh; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) : + Lớp 10 chuyên Anh của trường Trung học Thực hành có bốn Tổ học sinh, số học sinh trong mỗi tổ bằng nhau. Trong một bài kiểm tra Anh văn, một số bạn được điểm 8, các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Hỏi lớp có bao nhiêu học sinh và có bao nhiêu bạn được 9 điểm bài kiểm tra Anh văn. [ads] + Cho một tấm tôn hình vuông. Người ta cắt ở bốn góc của tấm tôn đó bốn hình vuông nhỏ bằng nhau, mỗi hình vuông nhỏ có cạnh bằng 2 cm rồi gập tấm tôn lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. + Cho tam giác ABC vuông cân tại A. Vẽ trung tuyến BM. Đường tròn tâm O, đường kính CM cắt cạnh BC tại N. Vẽ đường kính NK của đường tròn (O), AK cắt đường tròn (O) tại E (E khác K). Chứng minh rằng ba điểm B, M, E thẳng hàng.