Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Phân loại theo chương, bài các đề tuyển sinh môn Toán năm học 2020 2021
Nội dung Phân loại theo chương, bài các đề tuyển sinh môn Toán năm học 2020 2021 Bản PDF - Nội dung bài viết Tài liệu tuyển sinh Toán 2020 2021 phân loại theo chương, bài Tài liệu tuyển sinh Toán 2020 2021 phân loại theo chương, bài Được tổng hợp bởi thầy giáo Diệp Tuân, tài liệu này bao gồm 224 trang được phân loại cụ thể theo từng chương và từng bài trong đề tuyển sinh môn Toán. Việc phân loại theo cấu trúc chương, bài sẽ giúp học sinh dễ dàng tìm kiếm và ôn tập một cách hiệu quả. Đây là tài liệu hữu ích giúp học sinh chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới.
Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán
Nội dung Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Tài liệu "Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán" được biên soạn bởi nhóm tác giả Mathpiad, gồm có Phan Quang Đạt, Nguyễn Nhất Huy, và Dương Quỳnh Châu. Tài liệu này bao gồm 62 trang, chứa đựng các bài toán số học chọn lọc từ các đề thi tuyển sinh chuyên Toán. Với sự tổng hợp kỹ lưỡng và chọn lọc từ những tác giả uy tín, đây sẽ là tài liệu hữu ích cho những ai đam mê và muốn thử sức với những bài toán số học phức tạp.
Một số phương pháp chứng minh bất đẳng thức
Nội dung Một số phương pháp chứng minh bất đẳng thức Bản PDF - Nội dung bài viết 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức 78 trang tài liệu hướng dẫn phương pháp chứng minh bất đẳng thức Tron trong tài liệu có 78 trang, chúng tôi sẽ hướng dẫn bạn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. Chúng tôi sẽ giới thiệu và đi vào chi tiết một số phương pháp sau: I. Bất đẳng thức Côsi Dạng 1: Chúng ta sẽ học cách chuyển từ dạng tổng sang tích. Dạng 2: Biết cách chuyển dạng tích sang tổng, nhân bằng số thích hợp. Dạng 3: Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. Dạng 4: Ghép cặp đôi để chứng minh bất đẳng thức. Dạng 5: Dự đoán kết quả và tách thích hợp để giải. Dạng 6: Kết hợp đặt ẩn phụ và dự đoán kết quả trong bài toán. Dạng 7: Tìm lại điều kiện của ẩn để áp dụng bất đẳng thức Côsi. II. Bất đẳng thức Bunhia Chúng ta sẽ tìm hiểu về các phương pháp chứng minh bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương Dạng 1: Biến đổi bài toán về dạng bình phương để chứng minh bất đẳng thức. Dạng 2: Tạo ra bậc hai bằng cách nhân hai bậc một. Dạng 3: Sử dụng phương pháp tạo ra ab + bc + ca để chứng minh. Dạng 4: Sử dụng tính chất trong ba số bất kỳ luôn tồn tại hai số có tích không âm để chứng minh. Dạng 5: Sử dụng tính chất của một số bị chặn từ 0 đến 1 để chứng minh bất đẳng thức. Dạng 6: Dự đoán kết quả rồi xét hiệu để chứng minh bất đẳng thức. Hệ thống bài tập sẽ sử dụng trong các chủ đề sau: Bất đẳng thức Côsi Bất đẳng thức Bunhia Phương pháp biến đổi tương đương
Các bài toán sử dụng nguyên lý bất biến trong giải toán
Nội dung Các bài toán sử dụng nguyên lý bất biến trong giải toán Bản PDF - Nội dung bài viết Các ứng dụng của nguyên lý bất biến trong giải toán Các ứng dụng của nguyên lý bất biến trong giải toán Bản tài liệu này bao gồm 16 trang và được trích từ cuốn sách nổi tiếng về việc áp dụng nguyên lý bất biến trong giải toán. Nguyên lý bất biến là một trong những công cụ quan trọng để giải quyết các bài toán phức tạp trong toán học. Bằng cách áp dụng nguyên lý này, người ta có thể tạo ra những phương pháp giải quyết hiệu quả, tiết kiệm thời gian và nâng cao khả năng suy luận của mình.