Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng định kì môn Toán 9 tháng 02 năm học 2021 – 2022 trường THCS Thanh Xuân Trung, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ của một nhà máy sản xuất khẩu trang lúc đầu trong một ngày sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong mùa dịch cúm do chủng mới virut Corona gây nên mỗi ngày tổ một vượt mức 75%, tổ hai vượt mức 68%, khi đó cả hai tổ sản xuất được 2583 chiếc khẩu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ của một con sông, người ta đặt máy đo ở vị trí C sao cho AC vuông góc AB. Biết AC = 20m và ACB = 75° (hình bên). Tính khoảng cách AB (làm tròn đến mét). + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. 2) a) MN cắt AO tại điểm I. Chứng minh: Al. AO = AM2. b) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL vòng 5 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng vòng 5 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 05 năm 2022. Trích dẫn đề KSCL vòng 5 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = (m + 1)x + 2 với x là biến số và m là tham số. a/ Chứng minh với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b/ Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1 và x2. Tìm m để x12 + x1 + (m + 2)x2 = 14. + Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di động trên cung nhỏ BC. Đoạn thẳng AE cắt đoạn thẳng CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. 1/ Chứng minh tứ giác EBHN nội tiếp. 2/ Chứng minh BN.BC = BH.BA. 3/ Chứng minh diện tích tứ giác AMHD không đổi, từ đó suy ra vị trí của điểm E để diện tích tam giác EMH lớn nhất. + Cho ba số x, y, z là các số thực dương thỏa mãn điều kiện x + y + z = 3. Chứng minh rằng?
Đề KSCL Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 05 năm 2022.
Đề KSCL Toán 9 cuối năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 cuối năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn đề KSCL Toán 9 cuối năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho phương trình: x2 – 4x + m + 5 = 0 (1) a) Tìm giá trị tham số m để phương trình (1) có nghiệm b) Tìm giá trị tham số m để phương trình (1) có hai nghiệm dương x2 và x2 thỏa mãn. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để chuẩn bị cho SEA Games 31 diễn ra từ ngày 12/5/2022 đến 23/5/2022 tại Việt Nam, Ban tổ chức tuyển chọn được 3000 tình nguyện viên (TNV) cả nam và nữ đáp ứng trình độ tiếng Anh B1. Nếu tăng yêu cầu tiếng Anh lên trình độ B2 thì số TNV nam giảm 20%, nữ giảm 10% và do đó tổng số TNV chỉ còn 2580 người. Hỏi Ban tổ chức đã tuyển chọn được bao nhiêu tình nguyện viên nam, bao nhiêu TNV nữ theo tiêu chuẩn ban đầu? + Từ điểm A bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC và cát tuyết AEF (B và C là tiếp điểm, tia AF nằm giữa hai tia AB và AO, E nằm giữa A và F). Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp b) Biết OB = 3cm, BOC = 120. Tính độ dài cung tròn BEC c) Đường thẳng đi qua K song song với BF cắt BC ở M. Chứng minh rằng KMC = KEC d) Tia FM cắt AB tại N. Chứng minh N là trung điểm của AB.
Đề KSCL Toán 9 lần 1 năm 2021 - 2022 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh lớp 9 môn Toán lần 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 lần 1 năm 2021 – 2022 phòng GD&ĐT Mê Linh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? + Tính diện tích tường nhà cần phải quét vôi của một căn phòng hình hộp chữ nhật có chiều dài 5 m, chiều rộng 4 m, chiều cao 4 m; biết diện tích để làm cửa đi và cửa sổ chiếm 20% diện tích tường. + Cho phương trình m2x – 2(m + 1)x + 1 = 0 (*) với m là tham số. a) Tìm giá trị của m để phương trình (*) có nghiệm bằng 2 b) Tìm giá trị nguyên nhỏ nhất của m để phương trình (*) có hai nghiệm phân biệt.