Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

Tài liệu gồm 240 trang, phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2) có đáp án, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 giai đoạn học kì 2. MỤC LỤC : Phần I GIẢI TÍCH. Bài 1. Nguyên hàm 6. + Dạng 1.1: Nguyên hàm cơ bản 6. Bảng đáp án 10. + Dạng 1.2: Nguyên hàm của hàm số hữu tỷ 10. Bảng đáp án 12. + Dạng 1.3: Nguyên hàm thỏa điều kiện cho trước 12. Bảng đáp án 14. + Dạng 1.4: Nguyên hàm của hàm số đạo hàm f′(x) 14. Bảng đáp án 16. + Dạng 1.5: Nguyên hàm của hàm số phân nhánh 17. Bảng đáp án 17. + Dạng 1.6: Phương pháp đổi biến số 18. Bảng đáp án 21. + Dạng 1.7: Phương pháp từng phần 21. Bảng đáp án 24. + Dạng 1.8: Nguyên hàm kết hợp đổi biến và từng phần 25. Bảng đáp án 25. + Dạng 1.9: Nguyên hàm của hàm ẩn 25. Bảng đáp án 29. Bài 2. TÍCH PHÂN 29. + Dạng 2.1: Tích phân sử dụng định nghĩa – tính chất 29. Bảng đáp án 33. + Dạng 2.2: Tích phân cơ bản 34. Bảng đáp án 39. + Dạng 2.3: Tích phân chứa trị tuyệt đối 39. Bảng đáp án 40. + Dạng 2.4: Tích phân đổi biến số 40. Bảng đáp án 47. + Dạng 2.5: Tích phân từng phần 48. Bảng đáp án 53. + Dạng 2.6: Tích phân kết hợp đổi biến và từng phần 54. Bảng đáp án 55. + Dạng 2.7: Tích phân hàm hữu tỷ 55. Bảng đáp án 56. + Dạng 2.8: Tích phân hàm ẩn 56. Bảng đáp án 61. + Dạng 2.9: Tích phân hàm phân nhánh 61. Bảng đáp án 62. + Dạng 2.10: Tích phân dựa vào đồ thị 62. Bảng đáp án 64. Bài 3. Ứng dụng tích phân 65. A Diện tích hình phẳng 65. + Dạng 3.1: Câu hỏi lý thuyết 65. Bảng đáp án 70. + Dạng 3.2: Diện tích hình phẳng được giới hạn các hàm số 70. Bảng đáp án 90. + Dạng 3.3: Bài toán chuyển động 91. Bảng đáp án 93. + Dạng 3.4: Toán thực tế – ứng dụng diện tích 93. Bảng đáp án 98. B THỂ TÍCH KHỐI TRÒN XOAY 98. + Dạng 3.5: Thể tích khối tròn xoay được giới hạn các hàm số 98. Bảng đáp án 105. + Dạng 3.6: Thể tích theo mặt cắt S(x) 105. Bảng đáp án 107. + Dạng 3.7: Bài toán thực tế ứng dụng thể tích 107. Bảng đáp án 110. Bài 4. SỐ PHỨC 111. A Khái niệm số phức 111. + Dạng 4.1: Câu hỏi lý thuyết 111. Bảng đáp án 111. + Dạng 4.2: Phần thực, phần ảo, môđun, số phức liên hợp 111. Bảng đáp án 114. + Dạng 4.3: Biểu diễn số phức 114. Bảng đáp án 118. B Các phép toán số phức 119. + Dạng 4.4: Câu hỏi lý thuyết 119. Bảng đáp án 119. + Dạng 4.5: Thực hiện các phép toán trên số phức 119. Bảng đáp án 122. + Dạng 4.6: Xác định các yếu tố số phức 122. Bảng đáp án 125. + Dạng 4.7: Tìm số phức thỏa điều kiện 125. Bảng đáp án 128. C Biểu diễn hình học 128. + Dạng 4.8: Biểu diễn hình học số phức qua các phép toán 128. Bảng đáp án 130. + Dạng 4.9: Tập hợp số phức 131. Bảng đáp án 133. D Phương trình bậc hai 133. + Dạng 4.10: Phương trình bậc 2 với hệ số thực – Tính toán biểu thức nghiệm 133. Bảng đáp án 137. + Dạng 4.11: Định lí Vi – et trong số phức 137. Bảng đáp án 139. + Dạng 4.12: Biểu diễn hình học nghiệm của phương trình bậc hai 139. Bảng đáp án 140. + Dạng 4.13: Bài toán chứa tham số m 141. Bảng đáp án 142. E CỰC TRỊ SỐ PHỨC 142. + Dạng 4.14: Sử dụng Môđun – liên hợp 142. Bảng đáp án 143. + Dạng 4.15: Phương pháp hình học 143. Bảng đáp án 145. + Dạng 4.16: Phương pháp đại số 145. Bảng đáp án 147. Phần II HÌNH HỌC. Bài 1. HỆ TRỤC TỌA ĐỘ 149. + Dạng 1.1: Tọa độ điểm, tọa độ véc – tơ 149. Bảng đáp án 153. + Dạng 1.2: Tích vô hướng và ứng dung 153. Bảng đáp án 157. + Dạng 1.3: Tích có hướng và ứng dụng 157. Bảng đáp án 160. + Dạng 1.4: Mặt cầu 160. Bảng đáp án 164. + Dạng 1.5: Phương trình mặt cầu 164. Bảng đáp án 169. Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG 169. + Dạng 2.1: Xác định véc – tơ pháp tuyến 169. Bảng đáp án 170. + Dạng 2.2: Phương trình mặt phẳng 170. Bảng đáp án 174. + Dạng 2.3: Vị trí giữa hai mặt phẳng 175. Bảng đáp án 176. + Dạng 2.4: Tìm tọa độ điểm liên quan mặt phẳng 176. Bảng đáp án 177. + Dạng 2.5: Khoảng cách từ 1 điểm đến mặt phẳng và bài toán liên quan 177. Bảng đáp án 180. + Dạng 2.6: Bài toán liên quan mặt phặt phẳng – mặt cầu 180. Bảng đáp án 184. + Dạng 2.7: Phương trình mặt cầu liên quan mặt phẳng 184. Bảng đáp án 185. + Dạng 2.8: Phương trình mặt phẳng theo đoạn chắn 186. Bảng đáp án 188. + Dạng 2.9: Phương trình mặt phẳng liên quan đến góc 188. Bảng đáp án 190. + Dạng 2.10: Hình chiếu vuông góc của điểm lên mặt phẳng 190. Bảng đáp án 191. + Dạng 2.11: Bài toán liên quan cực trị 191. Bảng đáp án 196. Bài 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 196. + Dạng 3.1: Xác định véc – tơ chỉ phương 196. Bảng đáp án 198. + Dạng 3.2: Phương trình đường thẳng 198. Bảng đáp án 206. + Dạng 3.3: Phương trình mặt phẳng liên quan đường thẳng 206. Bảng đáp án 211. + Dạng 3.4: Điểm liên quan đường thẳng 212. Bảng đáp án 214. + Dạng 3.5: Khoảng cách – góc 215. Bảng đáp án 216. + Dạng 3.6: Vị trị tương đối giữa hai đường thẳng 216. Bảng đáp án 218. + Dạng 3.7: Vị trí tương đối giữa đường thẳng và mặt phẳng 218. Bảng đáp án 221. + Dạng 3.8: Bài toán liên quan: Mặt phẳng – đường thẳng – mặt cầu 221. Bảng đáp án 227. + Dạng 3.9: Hình chiếu của điểm lên đường thẳng 227. Bảng đáp án 229. + Dạng 3.10: Bài toán liên quán: Góc – khoảng cách 230. Bảng đáp án 233. + Dạng 3.11: Bài toán liên quan đến cực trị 233. Bảng đáp án 239.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm hình trụ, khối trụ - Nguyễn Vũ Minh
Tài liệu gồm 36 trang tuyển tập các bài toán trắc nghiệm chủ đề hình trụ tròn xoay, khối trụ tròn xoay (gọi tắt là hình trụ, khối trụ). Các bài toán có đáp án, một số ví dụ điển hình có lời giải chi tiết giúp học sinh nắm vững phương pháp giải. Tài liệu do thầy Nguyễn Vũ Minh biên soạn.
124 bài tập trắc nghiệm mặt nón, hình nón và khối nón - Hứa Lâm Phong
Tài liệu gồm 14 trang tuyển chọn 124 bài toán trắc nghiệm chủ đề mặt nón, hình nón và khối nón. Trích dẫn tài liệu : + Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Trong đó OA = 4a, OB = OC = 3a√2. Một mặt phẳng song song với mặt phẳng (OBC) cắt AO, AB, AC lần lượt tại M, N, P. Gọi W là tâm đường tròn ngoại tiếp tam giác MNP. Gọi S là hình chiếu vuông góc của W lên (OBC). Tính thể tích V lớn nhất của khối nón có đỉnh là S, đáy là đường tròn ngoại tiếp tam giác MNP. + Cắt bỏ hình quạt tròn AOB từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau để được một cái phễu có dạng của một hình tròn. Gọi x là góc ở tâm của quạt tròn dùng làm phễu 0 < x < 2π. Tìm thể tích lớn nhất của hình nón. [ads] + Người ta đặt được vào một hình nón hai khối cầu có bán kính lần lượt là 1dm và 2dm sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là? + Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước trà ra ngoài là 18 dm3. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm trong nước. Tính thể tích nước còn lại trong bình. + Cho hình trụ có đường kính và chiều cao là 4. Một đường thẳng Δ thay đổi luôn cắt trục của trụ và tạo với trục góc 30 độ đồng thời luôn cắt hai hình tròn đáy. Quay Δ quanh trục của trụ ta được một khối tròn xoay. Giá trị lớn nhất và nhỏ nhất của thể tích khối đó là?
Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên
Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB
Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy