Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương

Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Hiểu rõ bản chất hình học của bài toán cực trị tọa độ không gian - Võ Trọng Trí
Để giải nhanh bài toán cực trị trong hình học tọa độ không gian, chúng ta cần tìm được vị trí đặc biệt của nghiệm hình để cực trị (số đo góc, khoảng cách, độ dài) xảy ra. Khi biết vị trí đặc biệt đó, việc tính toán chỉ còn vài dòng đơn giản là ra kết quả. Sau đây các các bài toán cực trị tọa độ không gian thường gặp, bản chất hình học của nó và công thức giải nhanh bài toán đó. + Bài toán 1: Viết phương trình mặt phẳng đi qua một đường thẳng d và cách một điểm M ∉ d một khoảng lớn nhất. + Bài toán 2: Viết phương trình mặt phẳng (P) chứa đường thẳng d, tạo với đường thẳng d’(d’ không song song với d) một góc lớn nhất. + Bài toán 3: Viết phương trình đường thẳng d đi qua một điểm A cho trước và nằm trong mặt phẳng (P) cho trước và cách một điểm M cho trước một khoảng nhỏ nhất. (AM không vuông góc với (P)). + Bài toán 4: Viết phương trình đường thẳng d đi qua điểm A cho trước, nằm trong mặt phẳng (P) và cách điểm M (M khác A, MA không vuông góc với (P)) một khoảng lớn nhất. [ads] + Bài toán 5: Cho mặt phẳng (P) và điểm A ∈ (P), và đường thẳng d (d cắt (P) và d không vuông góc với (P)). Viết phương trình đường thẳng d’ đi qua A, nằm trong (P) và tạo với d một góc nhỏ nhất. + Bài toán 6: Cho mặt phẳng (P) và điểm A ∈ (P) và đường thẳng d cắt (P) tại điểm khác M khác A. Viết phương trình đường thẳng d’ nằm trong (P), đi qua A và khoảng cách giữa d và d’ lớn nhất. + Bài toán 7: Cho mặt phẳng (P) và đường thẳng d//(P). Viết phương trình đường thẳng d//d′ và cách d một khoảng nhỏ nhất. + Bài toán 8: Viết phương trình mặt phẳng đi qua điểm A và cách điểm M (khác A) một khoảng lớn nhất. + Bài toán 9: Các bài toán khác đòi hỏi chúng ta cần có trực giác hình học để giải nhanh.
Tuyển tập một số bài toán cực trị trong hình học tọa độ không gian - Lưu Huy Thưởng
Tài liệu gồm 20 trang tuyển chọn một số bài toán cực trị trong hình học tọa độ không gian, các bài toán được chia thành 2 phần: + Tuyển tập một số bài toán cực trị viết phương trình mặt phẳng + Tuyển tập một số bài toán cực trị viết phương trình đường thẳng Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: (x + 2)/1 = y/-2 = (z – 2)/2. Gọi Δ là đường thẳng qua điểm A(4;0;–1) song song với d. Gọi (P): Ax + By + Cz + D = 0 (A, B, C ∈ Z) là mặt phẳng chứa Δ và có khoảng cách đến d là lớn nhất. Khi đó M = A^2 + B^2 + C^2 có thể là giá trị nào sau đây? + Trong không gian với hệ toạ độ Oxyz, gọi (P) là mặt phẳng đi qua điểm M (1; 4; 9), cắt các tia Ox, Oy, Oz tại A, B, C sao cho biểu thức OA + OB + OC có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây? [ads] + Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng (x + 1)/2 = (y – 1)/-1 = z/2. Gọi d là đường thẳng đi qua điểm B và cắt đường thẳng  tại điểm C sao cho diện tích tam giác ABC có giá trị nhỏ nhất. Đường thẳng d vuông góc với đường thẳng nào sau đây?
Chuyên đề hình học giải tích trong không gian - Trần Thông
Tài liệu gồm 111 trang gồm lý thuyết, công thức, dạng toán, hưỡng dẫn giải và bài tập trắc nghiệm có đáp án chuyên đề hình học giải tích trong không gian. Trong chương trình Hình học 12, các dạng toán liên quan đến đường thẳng, mặt phẳng, mặt cầu trong không gian là các dạng toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong đề thi trung học phổ thông quốc gia nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy còn nhiều bạn học sinh lúng túng nhiều trong quá trình giải các bài toán liên quan đến đường thẳng, mặt phẳng, mặt cầu. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề: Hình học giải tích trong không gian. Trong chuyên đề, tôi đã tóm tắt lý thuyết, phân loại các dạng bài tập từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Bên cạnh đó, trong chuyên đề này cũng giới thiệu lại một số dạng toán khó, lạ ít được sử dụng trong các kỳ thi những năm gần đây để bạn đọc có cái nhìn tổng quát hơn về hình học giải tích trong không gian. [ads] Chuyên đề gồm 4 phần: + Phần A: Kiến thức cần nhớ + Phần B: Bài tập minh họa + Phần C: Ứng dụng giải các bài tập hình học không gian thuần túy + Phần D: Bài tập trắc nghiệm
Phát huy kỹ thuật đặt trục giải nhanh hình học không gian từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 370 trang trình bày cách giải nhanh hình học không gian bằng cách gắn hệ trục tọa độ, các bài tập trong sách đều có đáp án và lời giải chi tiết. Nội dung sách : Phần 1. Kiến thức cơ bản về hình học không gian Kiến thức cơ bản về các hình Phương pháp giải Phần 2. Giải theo 2 phương pháp Hình chóp [ads] + Dạng 1. Thể tích hình chóp đều + Dạng 2. Thể tích hình chóp có cạnh bên vuông góc với mặt đáy + Dạng 3. Thể tích hình chóp có mặt bên vuống góc với mặt đáy + Dạng 4. Thể tích hình chóp có các cạnh bên bằng nhau + Dạng 5. Hình chóp có các mặt bên (hoặc cạnh bên) đôi một vuông góc + Dạng 6. Tỉ số thể tích (Simson) + Dạng 7. Thể tích “nơtrino” Lăng trụ + Dạng 1. Thể tích lăng trụ đều, đứng + Dạng 2. Thể tích lăng trụ xiên Phần 3. Phương pháp đặt trục tọa độ