Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hệ tọa độ trong không gian - Nguyễn Bảo Vương

Tài liệu gồm 54 trang bao gồm tóm tắt lý thuyết cơ bản, công thức tính tọa độ, phân dạng toán, hướng dẫn giải và bài tập các chủ đề trong bài học hệ tọa độ trong không gian (Bài 1, Hình học 12 chương 3: Phương pháp tọa độ trong không gian), các bài tập trong tài liệu có đáp án và lời giải chi tiết. Tài liệu do thầy Nguyễn Bảo Vương biên soạn và giảng dạy. Các vấn đề hệ tọa độ trong không gian : Vấn đề 1. CÁC ĐỊNH TỌA ĐỘ CỦA ĐIỂM, TỌA ĐỘ VECTƠ Phương pháp : Sử dụng các kết quả trong phần: + Tọa độ của vectơ. + Tọa độ của điểm. + Liên hệ giữa tọa độ vectơ và tọa độ hai điểm mút. Vấn đề 2. PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Với phương trình cho dưới dạng chính tắc (S): (x − a)^2 + (y − b)^2 + (z − c)^2 = k, với k > 0 ta lần lượt có: + Bán kính bằng R = √k. + Tọa độ tâm I là nghiệm của hệ phương trình: x – a = 0, y – b = 0 và z – c = 0. Suy ra I(a; b; c). Với phương trình cho dưới dạng tổng quát ta thực hiện theo các bước: + B­ước 1: Chuyển phương trình ban đầu về dạng:(S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0. (1) + B­ước 2: Để (1) là phương trình mặt cầu điều kiện là: a2 + b2 + c2 − d > 0. + B­ước 3: Khi đó (S) có thuộc tính: Tâm I(a; b; c) và bán kính R = √(a2 + b2 + c2 − d). [ads] Vấn đề 3. VIẾT PHƯƠNG TRÌNH MẶT CẦU Phương pháp : Gọi (S) là mặt cầu thoả mãn điều kiện đầu bài. Chúng ta lựa chọn phương trình dạng tổng quát hoặc dạng chính tắc. Khi đó: 1. Muốn có phương trình dạng chính tắc, ta lập hệ 4 phương trình với bốn ẩn a, b, c, R, điều kiện R > 0. Tuy nhiên, trong trường hợp này chúng ta thường chia nó thành hai phần, bao gồm: + Xác định bán kính R của mặt cầu. + Xác tâm I(a; b; c) của mặt cầu. Từ đó, chúng ta nhận được phương trình chính tắc của mặt cầu. 2. Muốn có phương trình dạng tổng quát, ta lập hệ 4 phương trình với bốn ẩn a, b, c, d, điều kiện a2 + b2 + c2 − d > 0. Chú ý : 1. Cần phải cân nhắc giả thiết của bài toán thật kỹ càng để lựa chọn dạng phương trình thích hợp. 2. Trong nhiều trường hợp đặc thù chúng ta còn sử dụng phương pháp quỹ tích để xác định phương trình mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Tăng Vũ
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Nguyễn Tăng Vũ (phát hành ngày 11 tháng 04 năm 2020), trình bày tóm tắt lý thuyết, một số ví dụ minh họa và tuyển chọn bài tập các chuyên đề trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian; tài liệu giúp học sinh học tốt chương trình Toán 12 và ôn thi tốt nghiệp THPT, tuyển sinh vào Đại học – Cao đẳng. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Tăng Vũ: Chủ đề 1 . Phương trình tổng quát của đường thẳng. 1. Phương trình tổng quát của đường thẳng. 2. Vị trí tương đối của hai đường thẳng. 3. Bài tập. Chủ đề 2 . Phương trình tham số của đường thẳng. 1. Lý thuyết. 2. Ví dụ. 3. Bài tập. Chủ đề 3 . khoảng cách – góc. 1. Khoảng cách từ một điểm đến đường thẳng. 2. Góc giữa hai đường thẳng. 3. Bài tập. [ads] Chủ đề 4 . Phương trình đường tròn. 1. Phương trình đường tròn. 2. Phương trình tiếp tuyến. 3. Bài tập. Chủ đề 5 . Phương trình chính tắc của elip. 1. Tóm tắt lý thuyết. 2. Bài tập. Chủ đề 6 . Bài tập tổng hợp. 1. Bài tập về tam giác – tứ giác. 2. Bài tập đường tròn. 3. Bài tập tổng hợp.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình đường thẳng
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình đường thẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình đường thẳng: Vấn đề 1. Xác định các yếu tố cơ bản của đường thẳng. Vấn đề 2. Viết phương trình đường thẳng. Vấn đề 3. Khoảng cách và góc. Vấn đề 4. Vị trí tương đối.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.
Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.