Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 9 năm 2018 - 2019 trường THCS Nguyễn Du - Hà Nội

Ngày 22 tháng 05 năm 2019, trường THCS Nguyễn Du – Hoàn Kiếm – Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán năm học 2018 – 2019 đối với học sinh lớp 9, nhằm tổng ôn kiến thức Toán trước khi các em bước vào kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề KSCL Toán 9 năm 2018 – 2019 trường THCS Nguyễn Du – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 năm 2018 – 2019 trường THCS Nguyễn Du – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai ôtô khởi hành cùng một lúc để đi từ A đến B, trên quãng đường AB dài 120 km. Biết rằng vận tốc trung bình của ô tô thứ nhất lớn hơn vận tốc trung bình của ôtô thứ hai là 12 km/h. Vì vậy, ô tô thứ nhất đã đến B trước ôtô thứ hai là 30 phút. Tính vận tốc trung bình của mỗi ô tô. [ads] + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx + m^2 + 2 (m khác 0). a) Chứng minh với mọi giá trị m khác 0, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 nằm về hai phía của trục Oy. b) Tìm tất cả giá trị m khác 0 để √(m – x1).√(m – x2) = 0. + Cho nửa đường tròn (O), đường kính AB và điểm M bất kì thuộc nửa đường tròn (M khác A và M khác B). Gọi C là trung điểm của đoạn thẳng AO. Gọi (d) là đường thẳng đi qua C, vuông góc với AB, (d) cắt nửa đường tròn (O) và đường thẳng BM lần lượt tại D và H. 1) Chứng minh: bốn điểm A, C, M, H cùng thuộc một đường tròn. 2) Gọi K là giao điểm của AM và CD. Chứng minh: CA.CB = CK.CH. 3) Gọi N là giao điểm thứ hai của đường thẳng BK và đường tròn ngoại tiếp tam giác MHK. Chứng minh: N nằm trên nửa đường tròn (O) và ON là tiếp tuyến của đường tròn ngoại tiếp tam giác MHK. 4) Chứng minh: khi điểm M thay đổi trên nửa đường tròn (O) thì đường thẳng MN luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).