Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: sytu.vn

Đọc Sách

Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 - 2018 sở GDĐT An Giang
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 – 2018 sở GD&ĐT An Giang gồm 10 bài toán, thí sinh làm bài trong khoảng thời gian 120 phút, kỳ thi được tổ chức ngày 31/3/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh : + Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t(h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đường thẳng có hệ số góc k = 1/4. Tính quãng đường mà vật di chuyển được trong 6 giờ. [ads] + Một nhà thực vật học đo chiều dài của 100 lá cây và trình bày mẫu số liệu ở bảng bên (đơn vị: cm). Hỏi chiều dài lá cây trung bình là bao nhiêu? Tính phương sai; độ lệch chuẩncủa mẫu số liệu. + Hai khối hình hộp chữ nhật có kích thước 10 x 18 x l được đặt hai bên một khối trụ tròn xoay có chiều dài để ngăn chặn nó tự lăn. Khối thứ nhất chêm bên phải có mặt 10 x l áp sát với mặt đất, khối thứ hai chêm bên trái có mặt 18 x l áp sát với mặt đất. Biết phần dôi ra bên trái lớn hơn phân dôi ra bên phải 4 đơn vị. Tính bán kính của khối trụ.
Đề thi chọn HSG tỉnh Toán 12 năm 2017 - 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG Toán 12 năm học 2017 - 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Đề thi HSG Toán 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán 12 có lời giải chi tiết .