Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội

Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định
Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Cao Bằng
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Một đoàn học sinh đi tham quan khu di tích lịch sử hang Pác Bó bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiều xe ô tô và có bao nhiêu học sinh đi tham quan, biết rằng số học sinh trên mỗi xe không quá 32 em. + Chứng minh rằng tổng A = 1 + 2 + 2^2 + … + 2^2019 chia hết cho 15. + Cho nửa đường tròn (O) có đường kính AB = 2R; CD là dây cung di động trên nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A; D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. a) Chứng minh tứ giác CFDH nội tiếp. b) Chứng minh: CF.CA = CH.CB. c) Gọi I là trung điểm của HF. Chứng minh tia OI là tia phân giác của góc COD. d) Chứng minh rằng khi dây cung CD di động trên nửa đường tròn, diện tích tam giác OID có giá trị không đổi.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.