Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định

Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 chuyên môn Toán năm học 2022 – 2023 của trường THPT chuyên Lê Hồng Phong, Nam Định. Kỳ thi sẽ diễn ra vào ngày Thứ Năm, 26 tháng 05 năm 2022. Trích dẫn đề thi vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định: + Từ năm 2022, chúng ta có các số nguyên dương đầu tiên là 1, 2, 3, ..., 2022. Trong đó, n số phân biệt được chọn sao cho hiệu của bất kì hai số được chọn không phải là ước của tổng hai số đó. Chúng ta cần chứng minh rằng số lượng n số không vượt quá 674. + Đề bài còn liên quan đến việc kẻ hai tiếp tuyến MA và MB từ điểm M nằm ngoài đường tròn (O;R). Tiếp theo, chúng ta cần chứng minh các mệnh đề về tứ giác OHCD nội tiếp, ba điểm A, C, G thẳng hàng, và tính giá trị biểu thức T với điều kiện OM = 3R. + Cuối cùng, đề bài còn đưa ra phương trình liên quan đến số nguyên tố p có dạng 4k + 3. Chúng ta cần chứng minh mối quan hệ giữa a, b, và p trong cách chia hết, và áp dụng vào việc giải phương trình x^2 + 4x + 9y^2 = 58. Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định mang đến cho các em học sinh cơ hội thách thức và phát triển năng lực toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.
Đề Toán (chuyên) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chuyên) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Trị; đề thi được dành cho thí sinh thi chuyên Toán; kỳ thi được diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT tỉnh Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tìm giá trị của tham số thực m để Parabol 2 Pyx và đường thẳng 2 3 dy x m có đúng một điểm chung. + Cho phương trình 2 x x 5 40. Gọi 1 2 x x là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị biểu thức 2 2 1 2 12 Q x x xx. + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24 km h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của bạn Mai khi đi học bằng xe đạp.