Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số vô tỉ, khái niệm về căn bậc hai, số thực

Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề số vô tỉ, khái niệm về căn bậc hai, số thực, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu: Kiến thức: + Nhận biết được sự tồn tại của số thập phân vô hạn tuần hoàn, từ đó hiểu được khái niệm số vô tỉ. + Nắm được khái niệm về căn bậc hai của một số không âm. + Biết được tập số thực là tên gọi chung cho tập số hữu tỉ và tập số vô tỉ. Từ đó thấy được sự phát triển các tập số từ N đến Z, Q và R. + Nắm được ý nghĩa của trục số thực. Kĩ năng: + Nhận biết được số vô tỉ. Phân biệt được dạng đồ thị của hàm số mũ và hàm số logarit. + Tính được căn bậc hai của một số không âm (bằng định nghĩa và máy tính bỏ túi) và sử dụng đúng kí hiệu. + Có kĩ năng so sánh số các số thực và biểu diễn số thực trên trục số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết mối quan hệ giữa các tập số. Dạng 2: Tìm căn bậc hai của một số cho trước và tìm một số biết căn bậc hai của nó. + Bài toán 1. Tìm căn bậc hai của một số cho trước. + Bài toán 2. Tìm một số biết căn bậc hai của nó. Dạng 3: Thực hiện phép tính. Dạng 4: Tìm x. Dạng 5: So sánh hai số. Dạng 6: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. Dạng 7. Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tam giác cân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được định nghĩa về tam giác cân, tam giác vuông cân, tam giác đều. + Nắm được các tính chất và dấu hiệu nhận biết của tam giác cân, tam giác đều. Kĩ năng: + Biết vẽ một tam giác cân, tam giác vuông cân và tam giác đều. + Nhận biết và chứng minh được một tam giác là tam giác cân, tam giác vuông cân và tam giác đều. + Vận dụng các tính chất của tam giác cân, tam giác vuông cân và tam giác đều để tính số đo góc, chứng minh các góc hay các cạnh bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết tam giác cân, tam giác đều. Dạng 2: Tính số đo góc, chứng minh các góc bằng nhau. Dạng 3: Chứng minh đoạn thẳng bằng nhau. Dạng 4: Các bài toán tổng hợp.
Chuyên đề trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (g.c.g), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ tam giác biết một cạnh và hai góc kề. + Phát biểu và hiểu được trường hợp bằng nhau góc – cạnh – góc. + Phát biểu và nắm được các hệ quả của trường hợp góc – cạnh – góc trong tam giác vuông. Kĩ năng: + Vẽ thành thạo một tam giác khi biết một cạnh và hai góc kề. + Phát hiện và chứng minh được hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Biết vận dụng một cách linh hoạt giữa các trường hợp bằng nhau của hai tam giác để chứng minh hai tam giác bằng nhau, hai đoạn thẳng (góc) bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc (đoạn thẳng) bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ tam giác biết một cạnh và hai góc kề. Dạng 2: Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. Dạng 4: Sử dụng nhiều trường hợp bằng nhau của tam giác.
Chuyên đề trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ tam giác biết hai cạnh và một góc xen giữa. + Phát biểu và hiểu được trường hợp bằng nhau cạnh – góc – cạnh. + Phát biểu và nắm được hệ quả của trường hợp cạnh – góc – cạnh trong tam giác vuông. Kĩ năng: + Vẽ thành thạo một tam giác khi biết hai cạnh và góc xen giữa. + Phát hiện và chứng minh được hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Chứng minh hai góc tương ứng bằng nhau thông qua chứng minh hai tam giác bằng nhau thông qua chứng minh hai tam giác bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc (đoạn thẳng) bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ một tam giác khi biết độ dài hai cạnh và góc xen giữa. Dạng 2: Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Dạng 3: Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau.
Chuyên đề trường hợp bằng nhau thứ nhất của tam giác cạnh - cạnh - cạnh (c.c.c)
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh (c.c.c), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ một tam giác khi biết độ dài ba cạnh. + Nắm được trường hợp bằng nhau cạnh – cạnh – cạnh của hai tam giác. Kĩ năng: + Biết vẽ một tam giác khi biết ba cạnh của nó. + Nhận biết và chứng minh được hai tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh. + Chứng minh các góc tương ứng bằng nhau thông qua chứng minh hai tam giác bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ tam giác khi biết ba cạnh. Dạng 2: Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh. Dạng 3: Sử dụng trường hợp bằng nhau cạnh – cạnh – cạnh để chứng minh hai góc bằng nhau.