Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh

Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội : + Trong vòng bán kết giải bóng đá của trường THCS Phù Đổng có 4 đội thi đấu, gọi A là tập hợp các cầu thủ; B là tập hợp các số áo thi đấu. Quy tắc mỗi cầu thủ ứng với số áo của họ có phải là một hàm số không? Vì sao? + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a/ Chứng minh: BD = CE. b/ Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c/ Gọi I là giao điểm của DE và AM. Chứng minh. + Tìm các số tự nhiên x, y thỏa mãn: 2×2 + 3y2 = 77.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.
Đề học sinh giỏi Toán 7 năm 2015 - 2016 phòng GDĐT Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5,6,7 nhưng sau đó chia theo tỉ lệ 4,5,6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P, Q là trung điểm của AD, BC và I là giao điểm các đường vuông góc với AD và BC tại P và Q. a) Chứng minh ∆AIB = ∆DIC. b) Chứng minh AI là tia phân giác của góc BAC. c) Kẻ IE vuông góc với AB, chứng minh AD AE. + Cho a, b, c là ba số thực khác 0, thoả mãn. Hãy tính giá trị của biểu thức.